

1736 Vista View Drive | Longmont, CO 80504 | tel: 303.776.7249 | fax: 303.776.7314 | info@emcintegrity.com

Test Report Number:	TRA71127, Rev. B
Report Type:	Full Compliance Immunity
Reference Standard:	EN 61000-6-1: 2007
Date of Report:	15 January 2008
Product Name:	IonCleanse Premier
Model Number:	IonCleanse Premier
Serial Number:	08000
Manufacturer:	A Major Difference
Representative:	Neill Moroney

Approved By:

Uncent w. But

The results contained within this report relate only to the product tested. This report shall not be reproduced, except in full, without written approval from EMC Integrity, Inc. This report must not be used by the client to claim product certification, approval, or endorsement by EMC Integrity, NEMKO, NVLAP, NIST, or any agency of the federal government.

Prepared for:

A Major Difference 2950 S Jamaica Ct. Suite 300 Aurora, CO 80014 Phone: 303-755-0112 Fax: 303-755-3022

Customer Representative:

Neill Moroney Vice-President

Tested at:

EMC Integrity, Inc. 1736 Vista View Drive Longmont, Colorado 80504

Tested by:

Bill Norton EMC Test Technician

Report Prepared by:

Mary Burback Office Manager

Report Approved by:

Vincent W. Greb President

Revision	Description of Revision	Date:
Rev	Initial Release	17 December 2007
Rev. A	Changed name of manufacturer from Stargate	10 January 2008
	International to "A Major Difference"	
Rev. B	Changed description of device from "body	15 January 2008
	detoxification" to "vitality enhancement system."	

TABLE OF CONTENTS

	Section #
Test Summary	
Scope	2.0
Test Environment	
Electrostatic Discharge, IEC 61000-4-2	4.0
Radiated RF Immunity, IEC 61000-4-3	5.0
Electrical Fast Transient/Burst, IEC 61000-4-4	6.0
Surge Immunity, IEC 61000-4-5	7.0
Conducted RF Immunity, IEC 61000-4-6	8.0
Voltage Dips and Interrupts, IEC 61000-4-11	9.0

LIST OF APPENDICES

Electrostatic Discharge Test Data	APPENDIX A
Radiated RF Immunity Test Data	APPENDIX B
Electrical Fast Transient/Burst Test Data	APPENDIX C
Surge Immunity Test Data	APPENDIX D
Conducted RF Immunity Test Data	APPENDIX E
Voltage Dips and Interrupts Test Data	APPENDIX F
Product Data Sheet	APPENDIX G
EMI Test Log	APPENDIX H
Laboratory Accreditation	APPENDIX I

1.0 TEST SUMMARY

1.1 Product Description

The unit under test (UUT) was the IonCleanse Premier. The Serial Number tested was 08000. This product is manufactured by A Major Difference located in Aurora, Colorado. It is a vitality enhancement system. A more complete description of this product may be found in the Product Data Sheet, located in Appendix G of this report.

1.2 Immunity Test Standards Used

The standard applied to this product was EN 61000-6-1: 2007, which is the generic immunity standard for residential, commercial and light industrial environments. The normative references of this standard define the test methods used for the immunity testing. This information is summarized in Tables 1-1.

Requirement	Specification	Test Method	Performance Criteria
EN 61000-6-1: 2007, Part 6-1: Generic	Electrostatic Discharge	IEC 61000-4-2: 2001-04	(B) Self-Recovering
Standard - Immunity for Residential.	Radiated RF Immunity	IEC 61000-4-3: 2006-02	(A) No Degradation
Commercial and Light	Electrical Fast Transient/Burst	IEC 61000-4-4: 2004-07	(B) Self-Recovering
Industrial	Surge Immunity	IEC 61000-4-5: 2005-11	(B) Self-Recovering
Environments	Conducted RF Immunity	IEC 61000-4-6: 2006-05	(A) No Degradation
	Power Frequency H-field Immunity	IEC 61000-4-8: 2001-03	Not applicable*
	Voltage Dips, Interrupts	IEC 61000-4-11: 2004-03	(B) Self-Recovering (C) User-intervention
			Allowed

<u>Table 1-1</u>

*testing not performed as UUT had no electronics which would be sensitive to low frequency magnetic fields.

1.3 Test Results

The UUT **complied** with all the immunity requirements defined by EN 61000-6-1: 2007. Test results are summarized in Table 1-2.

1.4 Modifications Required for Compliance

Modifications were required for compliance with the radiated RF immunity requirement. These are documented in the EMI Test Log, found in Appendix H of this report.

Table 1-2

Specification	Test Method	Test Conditions	Compliance
Electrostatic Discharge	IEC 61000-4-2	\pm 4 kV Contact / HCP, VCP / \pm 8 kV Air	Compliant
Radiated RF Immunity	IEC 61000-4-3	80 - 1000 MHz, 3 V/m, 80% 1 kHz AM	Compliant
		1.4 – 2.0 GHz, 3 V/m, 80% 1 kHz AM	
		2.0 – 2.7 GHz, 1 V/m, 80% 1 kHz AM	
EFT/Burst	IEC 61000-4-4	<u>+</u> 0.5 kV I/O, <u>+</u> 1.0 kV AC mains	Compliant
Surge Immunity	IEC 61000-4-5	$\pm 2 \text{ kV}$ common mode, $\pm 1 \text{ kV}$ differential	Compliant
		mode, AC mains	
Conducted RF Immunity	IEC 61000-4-6	150 kHz to 80 MHz, 3 Vrms, 80% 1 kHz AM,	Compliant
		power and I/O	
Power Frequency H-field	IEC 61000-4-8	3 A/m, 50/60 Hz, 3 axes	Not
Immunity			applicable
Voltage Dips and	IEC 61000-4-11	100% reduction for 0.5 and 1.0 cycles	Compliant
Interrupts		30% reduction for 25 cycles (50 Hz)	
		30% reduction for 30 cycles (60 Hz)	
		100% reduction for 250 cycles (50 Hz)	
		100% reduction for 300 cycles (60 Hz)	

2.0 SCOPE

2.1 Purpose

This report documents the test efforts performed on the IonCleanse Premier to verify compliance to the 2007 version of EN 61000-6-1, EMC, Part 6-1: Generic Standard – Immunity for Residential, Commercial and Light Industrial Environments. This was a formal qualification test and was conducted on the days of 26 through 29 November 2007.

2.2 Test Plan

Testing was performed in accordance with EN 61000-6-1: 2007. The Product Data Sheet defines the critical operational parameters for testing, as well as providing general product information. This is contained in Appendix G of this report.

2.3 Test Parameters

Critical parameters (i.e., parameters which are monitored during tesing) for this product are defined by the client. This information was defined by the client in Section 4.0 of the Product Data Sheet, contained in Appendix G of this report.

2.4 Definition of Performance Criterion for the UUT

In general, performance criteria for industrial products are defined as follows:

- *Level A*: During testing, normal operation within specification limits.
- *Level B*: During testing, temporary degradation or loss of function or performance which is self-recovering (i.e., no user intervention)
- *Level C*: During testing, temporary degradation, or loss of function which requires operator intervention or system reset occurs.

Specific performance criteria, as applied to this product, are defined in Section 4.0 of the Product Data Sheet, contained in Appendix G of this report.

3.0 TEST ENVIRONMENT

3.1 Immunity Test Site

The immunity testing was performed at EMCI's test facility in Longmont, Colorado. The radiated field immunity testing was performed in a ferrite lined, shielded enclosure. The enclosure is 10' high x 12' wide x 20' long in size and meets the field uniformity requirements of IEC 61000-4-3. The size of the chamber allows 2-meter separation between the antenna and the UUT.

All other immunity testing was performed on a ground plane measuring 3.0 meters by 4.5 meters (13.5 m^2) and made of 0.125" thick aluminum. The ground plane extended beyond the UUT by 0.5 meters and all sides, was bonded to the facility ground and configured in accordance with the applicable standards.

3.2 Test Sample Description

The unit under test (UUT) was the IonCleanse Premier. It is manufactured by A Major Difference located in Aurora, Colorado. During testing the UUT was operational and continually monitored for correct performance.

4.0 IEC 61000-4-2, Electrostatic Discharge

4.1 Summary of Test Results

Electrostatic discharge (ESD) testing was performed on the UUT in accordance with the test methods specified by IEC 61000-4-2. Contact discharge was performed at levels of ± 2 kV and ± 4 kV at applicable (conductive) test points. Air discharge was performed for non-conductive surfaces of the product at levels of ± 2 kV, ± 4 kV and ± 8 kV. Indirect discharge to the horizontal coupling plane (HCP) and the vertical coupling plane (VCP) were also performed to levels of ± 2 kV and ± 4 kV.

During all testing, the UUT exhibited no malfunctions and operated within specified tolerances and therefore, complies with the requirements of this test.

4.2 Test Setup

The UUT was set up per IEC 61000-4-2 and tested to the levels specified in EN 61000-6-1.

4.3 Special Configurations

N/A

4.4 **Performance Criteria**

Performance criterion Level B is defined as degradation in performance provided 1) the UUT self-recovers without user-intervention and 2) no data is lost.

4.5 Deviations from Test Procedures

N/a

4.6 Test Data

See APPENDIX A for data sheets, discharge points and test setup pictures.

4.7 Temperature and Humidity

Temperature, relative humidity and barometric pressure are located in the header table for the IEC 61000-4-2 test data sheet.

5.0 IEC 61000-4-3, Radiated RF Immunity

5.1 Summary of Test Results

Radiated RF immunity testing was performed on the UUT in accordance with the test methods specified by IEC 61000-4-3. The UUT was placed on a non-conductive table, 80 cm above the ferrite floor of the completely anechoic-lined chamber. The frequency range for this testing was 80 - 1000 MHz. The UUT was placed 2 meters from the radiating antenna; which was 1.5 meters above the floor of the chamber. Testing was performed in both horizontal and vertical antenna polarizations. The frequency was incremented in 1% steps, with a 3 second dwell time for each test frequency. The UUT was rotated on the table so that all four sides were illuminated in the 10 V/m field. The field was amplitude modulated with a 1 kHz sine wave to a depth of 80%. In addition, the UUT was tested for a 900 MHz field, pulse modulated at a frequency of 200 Hz with a 50% duty cycle. Performance of the unit was monitored remotely with the support PC, located outside the CALC.

During all testing, the UUT exhibited no malfunctions and operated within specified tolerances and therefore, complies with the requirements of this test.

5.2 Test Setup

The UUT was set up per IEC 61000-4-3 and tested to the levels specified in EN 61000-6-1.

5.3 Special Configurations

N/A

5.4 Performance Criteria

Performance criterion Level A is defined as no degradation in performance beyond manufacturer's specified tolerances.

5.5 Deviations from Test Procedures

N/a

5.6 Test Data

See APPENDIX B for data sheets and test setup pictures.

5.7 Temperature and Humidity

Temperature, relative humidity and barometric pressure are located in the header table for the IEC 61000-4-3 test data sheet.

6.0 IEC 61000-4-4, Electrical Fast Transient/Burst

6.1 Summary of Test Results

Electrical fast transient/burst immunity testing was performed on the UUT in accordance with the test methods specified by IEC 61000-4-4. The UUT AC power was tested via direct injection at a level of \pm 2 kV. External I/O in excess of 3 meters was tested via capacitive coupling clamp to a level of \pm 1.0 kV.

During all testing, the UUT exhibited no malfunctions and operated within specified tolerances and therefore, complies with the requirements of this test.

6.2 Test Setup

The UUT was set up per IEC 61000-4-4 and tested to the levels per EN 61000-6-1.

6.3 Special Configurations

N/A

6.4 **Performance Criteria**

Performance criterion Level B is defined as degradation in performance provided 1) the UUT self-recovers without user-intervention and 2) no data is lost.

6.5 Deviations from Test Procedures

N/a.

6.6 Test Data

See APPENDIX C for data sheet and test setup pictures.

6.7 Temperature and Humidity

Temperature, relative humidity and barometric pressure are located in the header table for the IEC 61000-4-4 test data sheet.

7.0 IEC 61000-4-5, Surge Immunity

7.1 Summary of Test Results

Surge immunity testing was performed on the UUT in accordance with the test methods specified by IEC 61000-4-5. The UUT AC power was tested via direct injection at levels of ± 0.5 kV and ± 1.0 kV for differential mode and at levels of ± 0.5 kV, ± 1.0 kV and ± 2.0 kV for common mode. Surges were injected at 0 degrees, 90 degrees, 180 degrees and 270 degrees of the input ac waveform at a rate of one pulse per minute. Five pulses were injected for each test configuration.

During all testing, the UUT exhibited no malfunctions or degradations in performance and therefore complies with the requirements of the test.

7.2 Test Setup

The UUT was set up per IEC 61000-4-5 and tested to the levels specified in EN 61000-6-1.

7.3 Special Configurations

N/A

7.4 Performance Criteria

Performance criterion Level B is defined as degradation in performance provided 1) the UUT self-recovers without user-intervention and 2) no data is lost.

7.5 Deviations from Test Procedures

N/A

7.6 Test Data

See APPENDIX D for data sheets and test setup pictures.

7.7 Temperature and Humidity

Temperature, relative humidity and barometric pressure are located in the header table for the IEC 61000-4-5 test data sheet.

8.0 IEC 61000-4-6, Conducted RF Immunity

8.1 Summary of Test Results

Conducted RF immunity testing was performed on the UUT in accordance with the test methods specified by IEC 61000-4-6. The UUT was subjected to injected RF signals on its input AC power cable. Injection on the AC leads was performed via a coupling/decoupling network (CDN). Injection on the I/O of the product was performed with an EM clamp. The frequency range for this testing was 150 kHz to 80 MHz. The test frequency was stepped in 1% increments with a three second dwell time for each injection frequency. The injection level used for all testing was 10 Vrms with 1 kHz AM to a depth of 80%.

At no time did the UUT exhibit any malfunctions or degradations in performance; thus, the UUT passed all portions of this test.

8.2 Test Setup

The UUT was set up per IEC 61000-4-6 and tested to the levels specified in EN 61000-6-1.

8.3 Special Configurations

N/A

8.4 **Performance Criteria**

Performance criterion Level A is defined as no degradation in performance beyond manufacturer's specified tolerances.

8.5 Deviations from Test Procedures

N/A

8.6 Test Data

See APPENDIX E for data sheets and test setup pictures.

8.7 Temperature and Humidity

Temperature, relative humidity and barometric pressure are located in the header table for the IEC 61000-4-6 test data sheet.

10.0 IEC 61000-4-11, Voltage Dips and Interrupts

10.1 Summary of Test Results

Voltage dip and interrupt testing was performed on the UUT in accordance with IEC 61000-4-11. The UUT was subjected to the following voltage fluctuations on its AC power input:

100 % reduction for 0.5 cycles	dip
100 % reduction for 1.0 cycles	dip
30% reduction for 25 cycles (50 Hz)	dip
30% reduction for 25 cycles (60 Hz)	dip
100% reduction for 250 cycles (50 Hz)	interruption
100% reduction for 300 cycles (60 Hz)	interruption

These variations in AC line voltage had no effect on the UUT, which passed the requirements of this test.

10.2 Test Setup

The UUT was set up per IEC 61000-4-11 and tested to the levels specified in EN 61000-6-1.

10.3 Special Configurations

N/A

10.4 Performance Criteria

The performance criteria for this test are Levels B and C. Level B is defined as allowing degraded performance provided that the UUT self-recovers without user intervention and no data is lost. Level C is defined as allowing user intervention to regain functionality of the product provided that no permanent damage occurs.

10.5 Deviations from Test Procedures

N/A

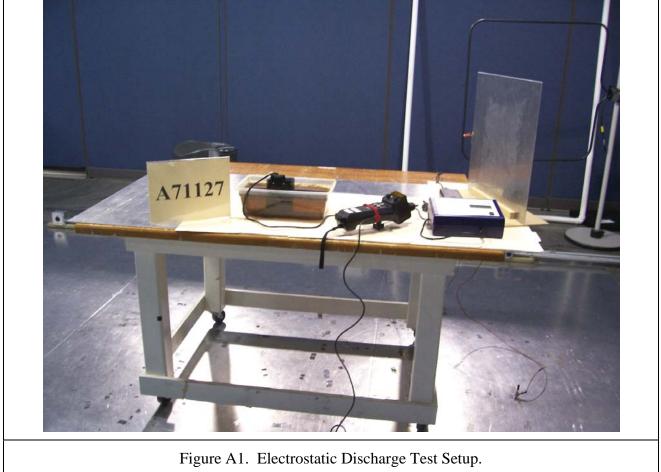
10.6 Test Data

See APPENDIX F for data sheets and test setup pictures.

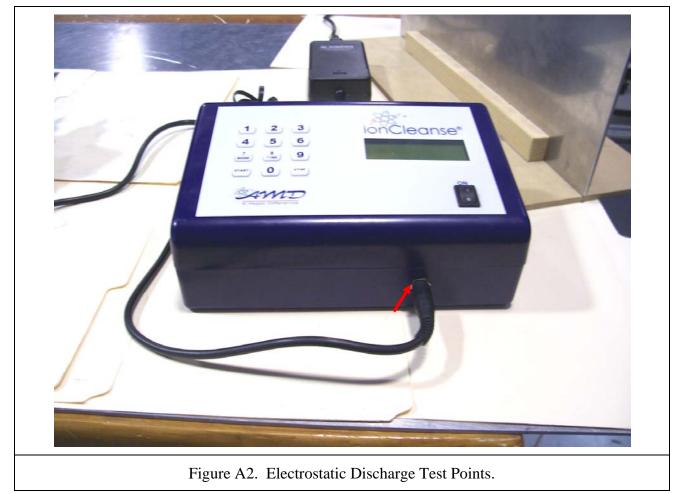
10.7 Temperature and Humidity

Temperature, relative humidity and barometric pressure are located in the header table for the IEC 61000-4-11 test data sheet.

APPENDIX A


Electrostatic Discharge Test Data

	Manufacture	:: A	Majo	Difference		Project Number:	A71127	
Customer F	Representative	e: No	eill M	oroney		Test Area:	GP 1	
	Model	l: Io	nClear	nse Premier		S/N:	08000	
Standar	rd Referenced	I: El	N 6100	00-6-1:200	7	Date:	November 2	6, 2007
	Temperature	: 22	2°C]	Humidity:	30% Pressure:	838mb	
	Input Voltage	: 23	30VAC	C/50Hz				
Configu	ration of Unit	t: N	ormal	Operation M	ode #1			
	Test Engineer	: Bi	ill Nor	ton				
A71127-4-2.doc	U							FR0100
Test	Voltage	Pola	arity	Number	Pulses	Comments	Criteria	Pass /
Location	Level	+	- 1	of Pulses	Per		Met	Fail
	(kV)				Second			
	. <u> </u>				Indirect Dis	charge Points		
VCP	2,4	Х	х	10	1	Front Side	А	Pass
VCP	2,4	х	х	10	1	Left Side	А	Pass
VCP	2,4	Х	х	10	1	Right Side	А	Pass
VCP	2, 4	х	х	10	1	Back Side	А	Pass
HCP	2,4	Х	Х	10	1	Edge of HCP at Front of UUT	Α	Pass
	1	r	1		Discharge F	Points - RED Arrows.		
Figure A2	2,4	Х	Х	10	1		А	Pass
Figure A3	2,4	Х	Х	10	1	No Discharges		
Figure A4	2,4	Х	Х	10	1	No Discharges		
Figure A5	2,4	Х	Х	10	1	Discharges at +/-4kV Only	A	Pass
Figure A6	2, 4	Х	Х	10	1	Discharges at +/-4kV Only	A	Pass
Figure A7	2,4	Х	Х	10	1	No Discharges		
	1				scharge Poir	nts - BLUE Arrows.	1	
Figure A2	2, 4, 8	Х	х	10	1		A	Pass
Figure A3	2, 4, 8	х	х	10	1	No Discharges		
Figure A4	2, 4, 8	х	х	10	1	No Discharges		
Figure A5	2, 4, 8	Х	Х	10	1	No Discharges		
Figure A6	2, 4, 8	Х	х	10	1	No Discharges		
Figure A7	2, 4, 8	Х	Х	10	1	No Discharges		



Manufacturer:	A Major Difference	Project Number:	A71127
Customer Representative:	Neill Moroney	Test Area:	GP 1
Model:	IonCleanse Premier	S/N:	08000
Standard Referenced:	EN 61000 -6-1 : 2007	Date:	November 26, 2007
A71127-4-2.doc			FR0100

Manufacturer:	A Major Difference	Project Number:	A71127
Customer Representative:	Neill Moroney	Test Area:	GP 1
Model:	IonCleanse Premier	S/N:	08000
Standard Referenced:	EN 61000 -6-1 : 2007	Date:	November 26, 2007
A71127-4-2.doc			FR0100

Manufacturer:	A Major Difference	Project Number:	A71127
Customer Representative:	Neill Moroney	Test Area:	GP 1
Model:	IonCleanse Premier	S/N:	08000
Standard Referenced:	EN 61000 -6-1 : 2007	Date:	November 26, 2007
A71127-4-2.doc		_	FR0100

Figure A3. Electrostatic Discharge Test Points.

Manufacturer:	A Major Difference	Project Number:	A71127
Customer Representative:	Neill Moroney	Test Area:	GP 1
Model:	IonCleanse Premier	S/N:	08000
Standard Referenced:	EN 61000 -6-1 : 2007	Date:	November 26, 2007
A71127-4-2.doc			FR0100

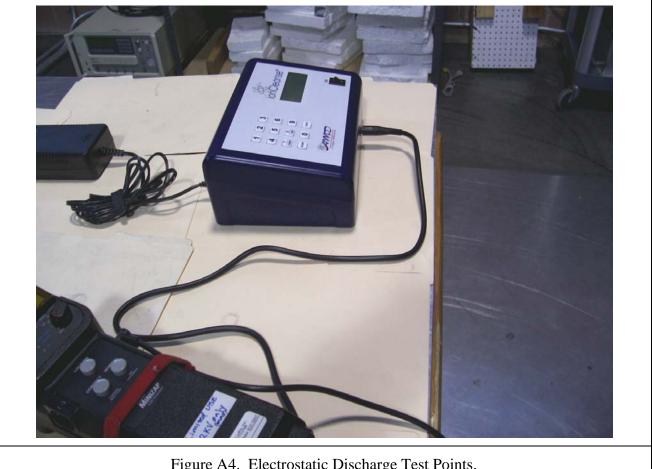


Figure A4. Electrostatic Discharge Test Points.

Manufacturer:	A Major Difference	Project Number:	A71127
Customer Representative:	Neill Moroney	Test Area:	GP 1
Model:	IonCleanse Premier	S/N:	08000
Standard Referenced:	EN 61000 -6-1 : 2007	Date:	November 26, 2007
A71127-4-2.doc			FR0100

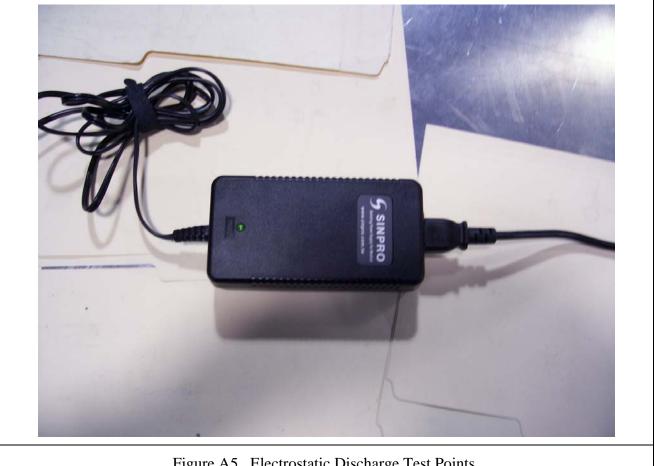


Figure A5. Electrostatic Discharge Test Points.

Manufacturer:	A Major Difference	Project Number:	A71127
Customer Representative:	Neill Moroney	Test Area:	GP 1
Model:	IonCleanse Premier	S/N:	08000
Standard Referenced:	EN 61000 -6-1 : 2007	Date:	November 26, 2007
A71127-4-2 doc			FR0100

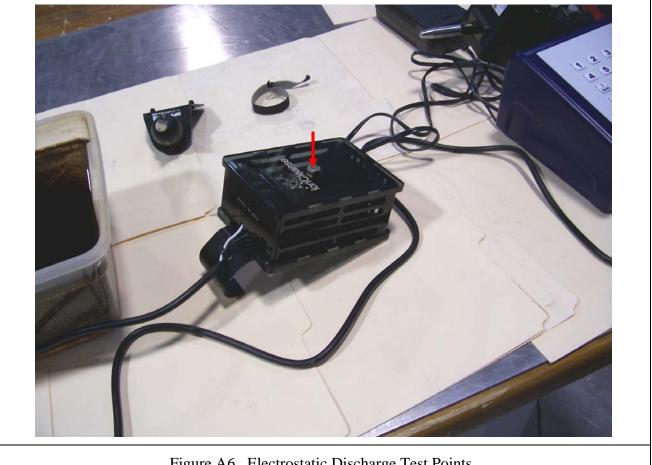


Figure A6. Electrostatic Discharge Test Points.

Manufacturer:	A Major Difference	Project Number:	A71127
Customer Representative:	Neill Moroney	Test Area:	GP 1
Model:	IonCleanse Premier	S/N:	08000
Standard Referenced:	EN 61000 -6-1 : 2007	Date:	November 26, 2007
A71127-4-2.doc			FR0100

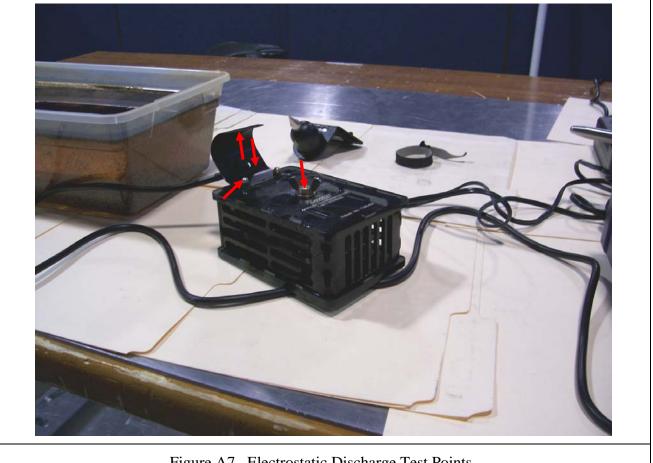


Figure A7. Electrostatic Discharge Test Points.

Electrostatic Discharge per IEC / EN 61000-4-2

Manufacturer:	A Major Difference	Project Number:	A71127
Customer Representative:	Neill Moroney	Test Area:	GP 1
Model:	IonCleanse Premier	S/N:	08000
Standard Referenced:	EN 61000 -6-1 : 2007	Date:	November 26, 2007
A71127-4-2.doc			FR0100

ID Number	Manufacturer	Model #	Serial #	Description	Cal Date	Cal Due		
1016	KeyTek	MZ-15/EC	0309248	Mini Zap ESD Gun	08/21/2007	08/21/2008		
1208	Extech	115715	252868	Hygro-Thermometer	03/06/2007	03/06/2008		
1214	California	1251P	10223	AC Power Source	NA	NA		
	Instruments							

Test Equipment List

APPENDIX B

Radiated RF Immunity Test Data

Radiated RF Immunity per IEC / EN 61000-4-3

	Manuf	acture	r A Ma	jor Differe	ence			Project Number:	A71127	
Customer				Moroney				Toject Number: Test Area:	CALC	
Customer	-	Model: IonCleanse Premier			S/N:	08000				
Stand	Standard Referenced: EN 61000 -6-1 : 2007 Date:									
Stand	Temp			1000 -0-1		idity: 32%		Pressure:	834 mb	
	Input V			AC/50Hz		$\frac{5270}{5270}$		Tressure.	834 III0	
Config	guration of			al Operati	on Moda	#1				
Conng	Test Er			•		#1				
A71127-4-3.do		igineei	1. 10111	wittig						FR0100
Frequency		Mo	dulation		Field	Polarity	Dwell	Comments	Criteria	Pass /
(MHz)	Туре	%	Freq	Form	(V/m)	(V or H)	(sec)		Met	Fail
80 - 1000	AM	80	1kHz	Sine	3	V	3	Front Side	А	Pass
900	AM	99	200Hz	Square	3	V	10		А	Pass
1400-2000	AM	80	1kHz	Sine	3	V	3		А	Pass
2000-2700	AM	80	1kHz	Sine	1	V	3		А	Pass
80 - 1000	AM	80	1kHz	Sine	3	Н	3		А	Pass
900	AM	99	200Hz	Square	3	Н	10		А	Pass
1400-2000	AM	80	1kHz	Sine	3	Н	3		А	Pass
2000-2700	AM	80	1kHz	Sine	1	Н	3		А	Pass
80 - 1000	AM	80	1kHz	Sine	3	V	3	Right Side	А	Pass
900	AM	99	200Hz	Square	3	V	10		А	Pass
1400-2000	AM	80	1kHz	Sine	3	V	3		А	Pass
2000-2700	AM	80	1kHz	Sine	1	V	3		А	Pass
80 - 1000	AM	80	1kHz	Sine	3	Н	3		А	Pass
900	AM	99	200Hz	Square	3	Н	10		А	Pass
1400-2000	AM	80	1kHz	Sine	3	Н	3		А	Pass
2000-2700	AM	80	1kHz	Sine	1	Н	3		А	Pass
80 - 1000	AM	80	1kHz	Sine	3	V	3	Back Side	А	Pass
900	AM	99	200Hz	Square	3	V	10		А	Pass
1400-2000	AM	80	1kHz	Sine	3	V	3		А	Pass
2000-2700	AM	80	1kHz	Sine	1	V	3		А	Pass
80 - 1000	AM	80	1kHz	Sine	3	Н	3		А	Pass
900	AM	99	200Hz	Square	3	Н	10		А	Pass
1400-2000	AM	80	1kHz	Sine	3	Н	3		А	Pass
2000-2700	AM	80	1kHz	Sine	1	Н	3		А	Pass
									1	
80 - 1000	AM	80	1kHz	Sine	3	V	3	Left Side	А	Pass
900	AM	99	200Hz	Square	3	V	10		А	Pass
1400-2000	AM	80	1kHz	Sine	3	V	3		А	Pass
2000-2700	AM	80	1kHz	Sine	1	V	3		A	Pass
80 - 1000	AM	80	1kHz	Sine	3	Н	3		А	Pass
900	AM	99	200Hz	Square	3	Н	10		А	Pass
1400-2000	AM	80	1kHz	Sine	3	Н	3		А	Pass
2000-2700	AM	80	1kHz	Sine	1	Н	3		А	Pass

Radiated RF Immunity per IEC / EN 61000-4-3

Manufacturer:	A Major Difference	Project Number:	A71127			
Customer Representative:	Neill Moroney	Test Area:	CALC			
Model:	IonCleanse Premier	S/N:	08000			
Standard Referenced:	EN 61000 -6-1 : 2007	Date:	November 29, 2007			
A71127-4-3.doc			FR0100			

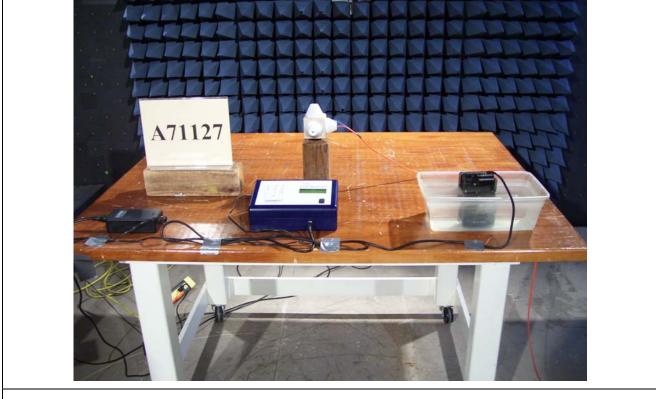


Figure B1. Radiated RF Immunity Test Setup – Front Side.

Radiated RF Immunity per IEC / EN 61000-4-3

Manufacturer:	A Major Difference	Project Number:	A71127
Customer Representative:	Neill Moroney	Test Area:	CALC
Model:	IonCleanse Premier	S/N:	08000
Standard Referenced:	EN 61000 -6-1 : 2007	Date:	November 29, 2007
A71127-4-3.doc		-	FR0100
		122223	
		FEFFF	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
		1111333	111
		DDD DDD	
	S S S S S S S S S S S S S S S S S S S	111111	119
		1000 VVV	
a second second	171127	ELERE?	
	A/112/	V	100
		the state of the state	
		Pas	
		ALL	
A A		Carlos Alexandre	

Figure B2. Radiated RF Immunity Test Setup – Right Side.

Radiated RF Immunity per IEC / EN 61000-4-3

Manufacturer:	A Major Difference	Project Number:	A71127
Customer Representative:	Neill Moroney	Test Area:	CALC
Model:	IonCleanse Premier	S/N:	08000
Standard Referenced:	EN 61000 -6-1 : 2007	Date:	November 29, 2007
A71127-4-3.doc			FR0100

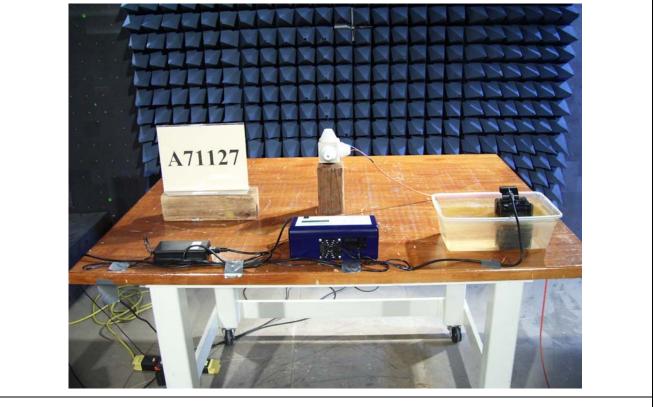


Figure B3. Radiated RF Immunity Test Setup – Back Side.

Radiated RF Immunity per IEC / EN 61000-4-3

Manufacturer:	A Major Difference	Project Number: A71127
Customer Representative:	Neill Moroney	Test Area: CALC
Model:	IonCleanse Premier	S/N: 08000
Standard Referenced:	EN 61000 -6-1 : 2007	Date: November 29, 2007
A71127-4-3.doc		FR0100
Fig	gure B4. Radiated RF Immunity Test Se	etup – Left Side.

Radiated RF Immunity per IEC / EN 61000-4-3

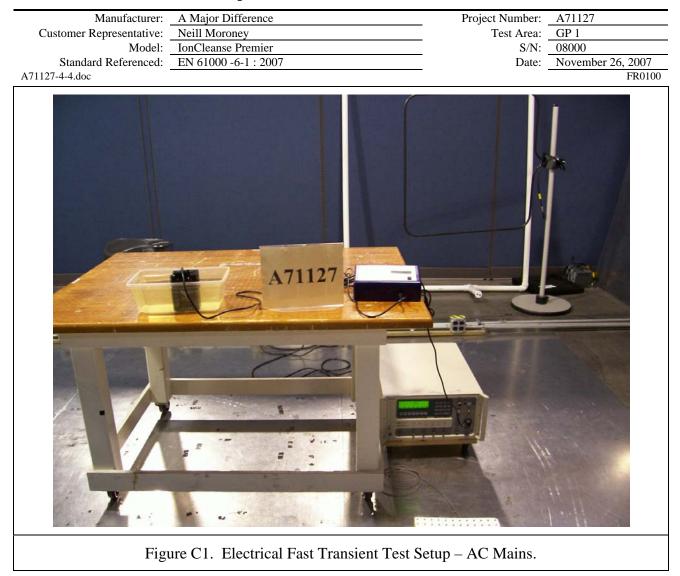
Manufacturer:	A Major Difference	Project Number:	A71127
Customer Representative:	Neill Moroney	Test Area:	CALC
Model:	IonCleanse Premier	S/N:	08000
Standard Referenced:	EN 61000 -6-1 : 2007	Date:	November 29, 2007
A71127-4-3.doc		-	FR0100

ID	Manufacturer	Model #	Serial #	Description	Cal Date	Cal Due
Number						
1005	EMCO	3140	1012	Biconilog Antenna	NA	NA
1052	Hughes	1177HO1R000	057	Traveling Wave Tube Amp, 10 Watt, 2 - 4 GHz	NA	NA
1056	Marconi	2041	119332/001	Signal Generator 10kHz - 2.7GHz	01/18/2007	01/18/2008
1058	Ray Proof	RF Shield Room	6698	Completely Anechoic Lined Chamber	01/30/2007	01/30/2008
1060	Stanford Research Systems	DS345	28898	30 MHz Function Generator	12/11/2006	12/11/2007
1063	Varian	VZL6941 K-1	5713	TWT amplifier, 1-2 GHz, 20 Watts	NA	NA
1181	EMCI	RFS	NA	Release 02 July 2004	NA	NA
1192	Amplifier Research	FP4000	308963	RF Field Probe 10 KHz - 1GHz	01/24/2007	01/24/2008
1250	OPHIR	5127F	1034	RF Power Amplifier 20- 1000MHz, 200 Watts	NA	NA
1193	Extech	445703	252025	Hygro-Thermometer	12/08/2006	12/08/2007
1069	Eaton	92341	43475-107	Antenna Mounting Adapter	NA	NA
1026	California Instruments	5001iX	55638	AC Power Source, 5kVA	NA	NA
1027	Eaton	91888-2	522	Horn Antenna	NA	NA
1028	Eaton	91889-2	521	Horn Antenna	NA	NA

Test Equipment List

APPENDIX C

Electrical Fast Transients/Burst Test Data


emc integrity incorporated

Electrical Fast Transient/Burst per IEC / EN 61000-4-4

		c c												
Manufacturer:				A Major Difference							Project Number:	A71127		
Customer Representative:				Neill Moroney							Test Area: GP 1			
Model:				IonCleanse Premier							S/N:	/N: 08000		
Standard Referenced:				EN 61000 -6-1 : 2007							Date:	: November 26, 2007		
	Temperature:				20°C Humidity: 30%					30%	Pressure:	: 838mb		
				230VAC/50Hz					_					
Con	Normal Operation Mode #1													
Test Engineer: Bill Norton														
									FR0100					
Voltage	Pola	nrity	Time	Injection	L	L	L	Ν	Р		Comments	Criteria	Pass /	
(kV)	+	-	(sec)	Туре	1	2	3		Е			Met	Fail	
1.0	х		60	CDN	х					AC Mains		А	Pass	
1.0		Х	60	CDN	х							А	Pass	
1.0	х		60	CDN				х				А	Pass	
1.0		Х	60	CDN				х				А	Pass	
1.0	х		60	CDN					х			А	Pass	
1.0		х	60	CDN					х			А	Pass	
1.0	х		60	CDN	х			х	х			Α	Pass	
1.0		Х	60	CDN	х			х	х			А	Pass	

Electrical Fast Transient/Burst per IEC / EN 61000-4-4

Electrical Fast Transient/Burst per IEC / EN 61000-4-4

Manufacturer:	A Major Difference	Project Number:	A71127
Customer Representative:	Neill Moroney	Test Area:	GP 1
Model:	IonCleanse Premier	S/N:	08000
Standard Referenced:	EN 61000 -6-1 : 2007	Date:	November 26, 2007
A71127-4-4.doc		-	FR0100

A71127-4-4.doc

Test	Eq	uip	oment	List
------	----	-----	-------	------

ID Number	Manufacturer Model #		Serial #	Description	Cal Date	Cal Due
1013	KeyTek	EMC Pro	0008347	Advanced EMC Immunity Tester	01/06/2007	01/06/2008
1184	KeyTek	CEWare32	NA	KeyTek EMCPro Control	NA	NA
				Software for EFT, Surge, H-F		
1208	Extech	115715	252868	Hygro-Thermometer	03/06/2007	03/06/2008
1214	California	1251P	10223	AC Power Source	NA	NA
	Instruments					

APPENDIX D

Surge Immunity Test Data

Surge Immunity per IEC / EN 61000-4-5

	М	lanufa	cture	er:	Α	Ma	jor I	Difference				Project Nun	iber:	A71127	
Custon	ner Re	presen	tativ	ve:				oney				Test A		GP 1	
		-	Aode					e Premier					S/N:	08000	
Sta	undard	Refer	ence	ed:	El	N 61	000	-6-1:200	7			Ι	Date:	November 2	6, 2007
	Т	empe	ratui	re:		°C			Humidity:	30%		Pres	sure:	838mb	
		put Vo					AC/	50Hz	<u> </u>						
Cor	nfigura				N	orm	al O	peration N	Iode #1						
		est Eng					orto								
471127-4-5	.doc														FR010
Voltage	Pola	arity	L	L	L	Ν	P	Phase	Number	Delay		Comments		Criteria	Pass /
(kV)	+	-	1	2	3		Е	(deg)	of Pulses	(sec)				Met	Fail
0.5	х		х			х		0	5	30	Differ	ential Mode		А	Pass
0.5		х	Х			х		0	5	30				А	Pass
0.5	х		Х			х		90	5	30				А	Pass
0.5		х	х			х		90	5	30				А	Pass
0.5	х		х			х		180	5	30				А	Pass
0.5		х	х			Х		180	5	30				А	Pass
0.5	х		Х			Х		270	5	30				А	Pass
0.5		х	х			Х		270	5	30				А	Pass
0.5	Х		Х				х	0	5	30	Comm	non Mode Line		А	Pass
0.5		х	х				х	0	5	30				А	Pass
0.5	х		х				х	90	5	30				А	Pass
0.5		х	х				х	90	5	30				А	Pass
0.5	х		Х				х	180	5	30				Α	Pass
0.5		Х	Х				х	180	5	30				А	Pass
0.5	Х		Х				Х	270	5	30				А	Pass
0.5		х	Х				х	270	5	30				А	Pass
0.5	Х					Х	Х	0	5	30	Comm	non Mode Neutral		A	Pass
0.5		Х				Х	Х	0	5	30				A	Pass
0.5	Х					Х	х	90	5	30				A	Pass
0.5		X			<u> </u>	Х	х	90	5	30				A	Pass
0.5	X					Х	х	180	5	30				A	Pass
0.5		X				Х	х	180	5	30				A	Pass
0.5	X					Х	х	270	5	30				A	Pass
0.5		X				Х	Х	270	5	30				A	Pass
1.0								0		60	Dicc			· ·	F
1.0	X		Х			Х		0	5	60	Differ	ential Mode		A	Pass
1.0		Х	X	<u> </u>	<u> </u>	X		0	5	60				A	Pass
1.0	X		X		<u> </u>	X		90	5	60				A	Pass
1.0		X	X			X		90	5 5	60				A	Pass
1.0	X		X			X		180		60				A	Pass
1.0		Х	X	<u> </u>	<u> </u>	X		180	5 5	60				A	Pass
1.0	X		X			X		270		60				A	Pass
1.0		X	X	<u> </u>	<u> </u>	X		270	5	60				A	Pass
1.0		<u> </u>		<u> </u>	<u> </u>			0	5	45	Com	aan Mada Lina		Α.	Pass
1.0 1.0	X	х	X X		<u> </u>		X X	0	5	45 45	Comr	non Mode Line		A	Pass Pass

Surge Immunity per IEC / EN 61000-4-5

		anufa						Difference			Project Number:	A71127	
Custom	ier Rej							oney			Test Area:	GP 1	
C.			Mode					e Premier	-		S/N:		
Sta	indard						.000	-6-1:200		2011	Date:	November 2	6, 2007
		empe				°C	. ~ .		Humidity:	30%	Pressure:	838mb	
		put Vo						50Hz					
Con	nfigura							peration M	lode #1				
A71127-4-5		st Eng	gine	er:	Bi	ll N	orto	n					FR0100
Voltage	Pola	nrity	L	L	L	N	P	Phase	Number	Delay	Comments	Criteria	Pass /
(kV)	+	-	1	2	3	- 1	Ē	(deg)	of Pulses	(sec)		Met	Fail
1.0	х		х				х	90	5	45		А	Pass
1.0		х	Х				х	90	5	45		А	Pass
1.0	Х		х				х	180	5	45		А	Pass
1.0		х	х				х	180	5	45		А	Pass
1.0	х		Х				х	270	5	45		А	Pass
1.0		х	Х				х	270	5	45		А	Pass
1.0	х					х	х	0	5	45	Common Mode Neutral	А	Pass
1.0		х				х	х	0	5	45		А	Pass
1.0	Х					х	х	90	5	45		А	Pass
1.0		Х				х	х	90	5	45		А	Pass
1.0	Х					х	х	180	5	45		А	Pass
1.0		х				х	х	180	5	45		А	Pass
1.0	х					х	х	270	5	45		А	Pass
1.0		х				х	х	270	5	45		Α	Pass
2.0	Х		х				х	0	5	60	Common Mode Line	А	Pass
2.0		Х	х				х	0	5	60		Α	Pass
2.0	х		х				х	90	5	60		Α	Pass
2.0		Х	х				х	90	5	60		А	Pass
2.0	Х		х				х	180	5	60		А	Pass
2.0		Х	х				х	180	5	60		А	Pass
2.0	х		х				Х	270	5	60		A	Pass
2.0		X	х				х	270	5	60		А	Pass
2.0	x					x	x	0	5	60	Common Mode Neutral	A	Pass
2.0	^	х				X	X	0	5	60		A	Pass
2.0	x	•		-		X	X	90	5	60		A	Pass
2.0	^	х	-			X	X	90	5	60		A	Pass
2.0	x	^	-			X	X	180	5	60		A	Pass
2.0		x	-	-		X	X	180	5	60		A	Pass
2.0	x	Λ	-			х	х	270	5	60		A	Pass
2.0		х		-		X	X	270	5	60		A	Pass

Surge Immunity per IEC / EN 61000-4-5

A Major Difference	Project Number:	A71127
Neill Moroney	Test Area:	GP 1
IonCleanse Premier	S/N:	08000
EN 61000 -6-1 : 2007	Date:	November 26, 2007
		FR0100
	Neill Moroney IonCleanse Premier	Neill MoroneyTest Area:IonCleanse PremierS/N:

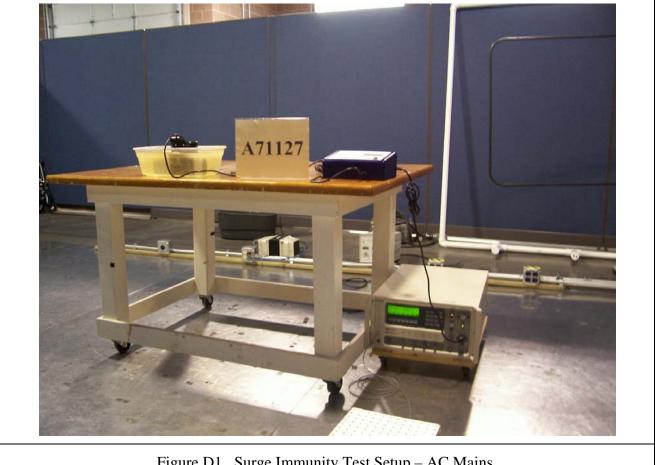


Figure D1. Surge Immunity Test Setup – AC Mains.

emc integrity incorporated

Surge Immunity per IEC / EN 61000-4-5

Manufacturer:	A Major Difference	Project Number:	A71127
Customer Representative:	Neill Moroney	Test Area:	GP 1
Model:	IonCleanse Premier	S/N:	08000
Standard Referenced:	EN 61000 -6-1 : 2007	Date:	
A71127-4-5.doc			FR0100

Test Equipment List

ID	Manufacturer	Model #	Serial #	Description	Cal Date	Cal Due
Number						
1013	KeyTek	EMC Pro	0008347	Advanced EMC Immunity Tester	01/06/2007	01/06/2008
1184	KeyTek	CEWare32	NA	KeyTek EMCPro Control	NA	NA
				Software for EFT, Surge, H-F		
1208	Extech	115715	252868	Hygro-Thermometer	03/06/2007	03/06/2008
1214	California	1251P	10223	AC Power Source	NA	NA
	Instruments					

Rev. B

APPENDIX E

Conducted RF Immunity Test Data

Conducted RF Immunity per IEC / EN 61000-4-6

	Manufac	cturer:	A Major	Difference			Project Number:	A71127	
Customer I	Represent	tative:	Neill Mor	roney			Test Area:	GP 1	
	Ν	Iodel:	IonClean	se Premier			S/N:	08000	
Standa	rd Refere	enced:	EN 6100	EN 61000 -6-1 : 2007			Date:	November 2	26, 2007
	Temper	ature:	19°C	19°C Humidity: 30%			Pressure:	838mb	
	Input Vo	ltage:	230VAC/	/50Hz					
Configu	uration of	Unit:	Normal C	Deration M	lode #1				
	Test Eng	ineer:	Bill Norte	on					
A71127-4-6.doc									FR0100
Frequency	N	Iodula	tion	Level	Dwell	C	Comments	Criteria	Pass /
(MHz)	Туре	%	Freq	(Vrms)	(sec)			Met	Fail
0.150 - 80.0	AM	80	1 kHz	3	3	AC Mains using M	M3 CDN	А	Pass

Conducted RF Immunity per IEC / EN 61000-4-6

Manufacturer:	A Major Difference	Project Number:	A71127
Customer Representative:	Neill Moroney	Test Area:	GP 1
Model:	IonCleanse Premier	S/N:	08000
Standard Referenced:	EN 61000 -6-1 : 2007	Date:	November 26, 2007
A71127-4-6.doc			FR0100

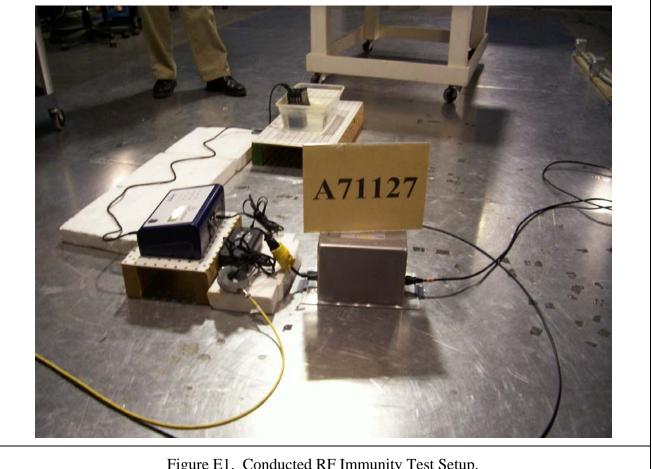


Figure E1. Conducted RF Immunity Test Setup.

Conducted RF Immunity per IEC / EN 61000-4-6

Manufacturer:	A Major Difference	Project Number:	A71127
Customer Representative:	Neill Moroney	Test Area:	GP 1
Model:	IonCleanse Premier	S/N:	08000
Standard Referenced:	EN 61000 -6-1 : 2007	Date:	November 26, 2007
A71127-4-6.doc		_	FR0100

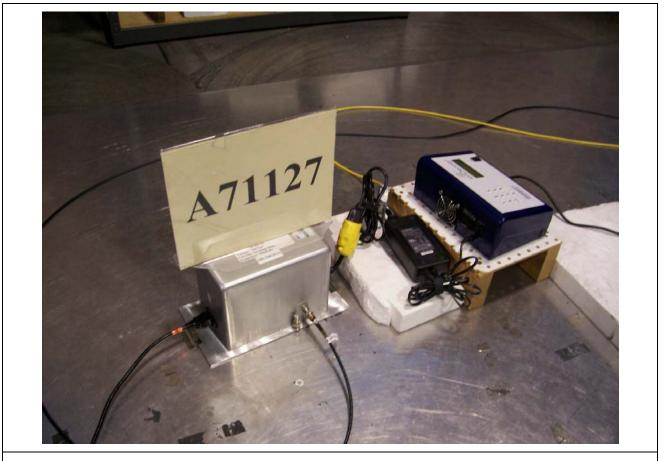


Figure E2. Conducted RF Immunity Test Setup – AC Mains.

Conducted RF Immunity per IEC / EN 61000-4-6

Manufacturer:	A Major Difference	Project Number:	A71127
Customer Representative:	Neill Moroney	Test Area:	GP 1
Model:	IonCleanse Premier	S/N:	08000
Standard Referenced:	EN 61000 -6-1 : 2007	Date:	November 26, 2007
A71127-4-6.doc			FR0100

ID Number	Manufacturer	Model #	Serial #	Description	Cal Date	Cal Due
1023	Amplifier Research	75A250	28844	75 Watt Amplifier (10 kHz - 250	NA	NA
1080	Fischer Custom	F-33-1	592	MHz) Current Probe (10 kHz - 230 MHz)	08/27/2007	08/27/2008
1181	EMCI	RFS	NA	Release 02 July 2004	NA	NA
1208	Extech	115715	252868	Hygro-Thermometer	03/06/2007	03/06/2008
1214	California Instruments	1251P	10223	AC Power Source	NA	NA
1225	EMCI	EMCI-CDN- M3-16	EMCI010	M3 CDN, 16A, 250 VAC	09/10/2007	09/10/2008
1258	Hewlett Packard	8648C	3537A01572	Signal Generator, 100kHz to 3.2GHz	05/14/2007	05/14/2008
1259	Hewlett Packard	8594E	3440A01325	Spectrum Analyzer with Tracking Generator, 9kHz to	04/27/2007	04/27/2008

Test Equipment List

APPENDIX F

Voltage Dip and Interrupts Test Data

emc integrity incorporated

Voltage Dips and Interrupts per IEC / EN 61000-4-11

	Manufact	turer:	A Majo	or Diffe	rence			Project Number:	A71127	
Customer	r Representa	ative:	Neill N	Ioroney	7			Test Area:	GP 1	
	- M	odel:	IonCle	anse Pro	emier			S/N:	08000	
Stand	lard Referen	nced:	EN 610	000 -6-1	1:2007			Date:	November 2	6, 2007
	Tempera	ature:	20°C		Hu	midity: 30%	1	Pressure:	838mb	
	Input Vol	-		C/50H		<u> </u>		-		
Confi	guration of				tion Mod	le #1		-		
	Test Engi		Bill No							
A71127-4-11.0										FR0100
%	No. of		Phase A	ngle (d	ea)	Time	Number	Comments	Criteria	Pass /
Nominal	Cycles	0		180	270	between	of tests	Comments	Met	Fail
Tommu	Cycles	v	70	100	270	dropouts	of tests		met	1 411
						(sec)				
				1		230VAC/50	Hz			
0%	0.5	Х	Т			10	3		Α	Pass
0%	0.5		х			10	3		А	Pass
0%	0.5			х		10	3		А	Pass
0%	0.5		1		х	10	3		Α	Pass
							-			
0%	1.0	х	1			10	3		А	Pass
0%	1.0		х			10	3		А	Pass
0%	1.0			х		10	3		А	Pass
0%	1.0				х	10	3		А	Pass
70%	25	Х				10	3		А	Pass
70%	25		х			10	3		А	Pass
70%	25			х		10	3		А	Pass
70%	25				х	10	3		А	Pass
0%	250	Х				10	3	EUT had to be restarted	С	Pass
0%	250			х		10	3	after every test.	С	Pass
						230VAC/60)Hz			
70%	30	х				10	3		А	Pass
70%	30		х			10	3		А	Pass
70%	30			х		10	3		А	Pass
70%	30				Х	10	3		А	Pass
0%	300	х				10	3	EUT had to be restarted	C	Pass
0%	300	1		х		10	3	after every test.	С	Pass

Voltage Dips and Interrupts per IEC / EN 61000-4-11

Manufacturer:	A Major Difference	Project Number:	A71127
Customer Representative:	Neill Moroney	Test Area:	GP 1
Model:	IonCleanse Premier	S/N:	08000
	EN 61000 -6-1 : 2007	Date:	November 26, 2007
71127-4-11.doc		_	FR01

Figure F1. Voltage Dips and Interruptions Test Setup.

emc integrity incorporated

Voltage Dips and Interrupts per IEC / EN 61000-4-11

Manufacturer:	A Major Difference	Project Number:	A71127
Customer Representative:	Neill Moroney	Test Area:	GP 1
Model:	IonCleanse Premier	S/N:	08000
Standard Referenced:	EN 61000 -6-1 : 2007	Date:	November 26, 2007
A71127-4-11.doc			FR0100

ID	Manufacturer	Model #	Serial #	Description	Cal Date	Cal Due
Number						
1013	KeyTek	EMC Pro	0008347	Advanced EMC Immunity Tester	01/06/2007	01/06/2008
1182	Tektronics	TDS1002	C043193	60 MHz Digital Oscilloscope	08/02/2007	08/02/2008
1184	KeyTek	CEWare32	NA	KeyTek EMCPro Control	NA	NA
				Software for EFT, Surge, H-F		
1208	Extech	115715	252868	Hygro-Thermometer	03/06/2007	03/06/2008
1214	California	1251P	10223	AC Power Source	NA	NA
	Instruments					

Test Equipment List

APPENDIX G

Product Data Sheet

www.emcintegrity.com

1736 Vista View Drive | Longmont, CO 80504 | tel: 303.776.7249 | fax: 303.776.7314 | info@emcintegrity.com

1.0 Client Information

Client Information	
Manufacturer Name	A Major Difference
Address	10235 S. Progress Way, Units 7 & 8
City	Parker
State	Colorado
Zip Code	80134
Client Representative	Neill Moroney
Title	
Phone	303-840-8206
Fax	303-840-8320
Email	rwalker@stargeteinternational.com

2.0 Product Information - General

Product Inform	nation					
Product Name (a	s it should appear on test report)	IonCleanse Premier				
Model Number		IonClea	nse Premier			
Functional descr	iption of product	Vitality	Enhancement Sys	stem		
Product type (IT	, Medical, Scientific, Industrial, etc.)	Househ	bld			
Is the product an	intentional radiator	No				
Product Dimensi	ons	12 x 8 x	4			
Product Weight		< 10 lbs				
Will fork lift be	required	No				
Applicable Stand	lards, if known	Generic	(61000-6-1 / EN	55011Grp 1 Cla	ss A)	
Describe all envi used	ronment(s) where product will be	Househ	old/non medical p	practitioners		
	nsist of multiple components? (If yes, each system component)	Yes – Power Supply (external), Main Box and Array				
Cycle time > 3 so	econds? (If yes, How long?)	No				
Highest internall	y generated frequency	4 MHz				
Product Set-up T	lime	< 15 minutes				
Boot up time in t down	the event of an unintentional power	< 5 minutes				
Identify all I/O C	Connections as well as maximum associa	ated cable	lengths below			
Model No.	Description		Shielded?	Length	Quantity	
	Array Cable			2 ft (approx)	1	

www.emcintegrity.com

1736 Vista View Drive | Longmont, CO 80504 | tel: 303.776.7249 | fax: 303.776.7314 | info@emcintegrity.com

3.0 Power

Power Requirements				
Input Voltage Rating as it appears on unit, power supply, or power brick	External Brick (SinPro model MPU50-107) 100-240 Vac, 47-63 Hz			
Input Current (specify @ 230 Vac/50 Hz)	1.35 A			
Single or Multi-Phase (If multi-phase, specify delta or wye)	Single Phase			
Is input power connector two-prong (Hot & Neutral) or 3-prong (H, N, Ground)	3 Prong grounded			
Does UUT have more than 1 power cord? (If yes, explain.)	No			

4.0 Unit Under Test (UUT) – Detailed Information

UUT Hardwa	are				
Condition	Ne	w – Production Li	ine		
Configuration During TestMode 1 for 60 minutes, with salinity			inity level set to approx. 2.0 Amps		
Input Power 230 Vac			_		
UUT Components					
Name	Model N		l No.	Description	
P/S	MPU50-1			External Sinpro AC/DC Converter.	
Main Box	IonClean Premier	080	000	Main control box for IonCleanse Premier	
Array				Array to be immersed in water solution	
I/O Cabling	I/O Cabling				
See Section 2	.0 for details	5			
UUT Softwa	re/Firmwar	e			
Name	Vers	sion/Revision	Functionality		
		5A05	Custom software to control parameters (Time, sample rate, etc) of		
		57105	product		
UUT Operating Conditions			1		
List all frequencies the product		4 MHz			
generates/uses					
How will product be exercised during test?		Mode 1			
How will product be monitored during test?		Display			
		ical parameters?		e in display	
Specify tolera	nce of all cri	tical parameters.	No Tolera	nce	

www.emcintegrity.com

1736 Vista View Drive | Longmont, CO 80504 | tel: 303.776.7249 | fax: 303.776.7314 | info@emcintegrity.com

5.0 Support Equipment (SE) – Detailed Information

Support Equ	ipment (SE)						
Name	Model No.	Seria	Serial No. Description				
N/A	N/A	N	/A		N/A		
SE I/O Cabli	ng			-			
Model No.		Desc	ription		Shielded?	Length	Quantity
N/A		ľ	N/A		N/A	N/A	N/A
SE Software	/Firmware						
Name	Version/H	Revision			Functionality		
N/A	N/4	4			N/A		

6.0 Block Diagram

(Must be completed prior to testing).

APPENDIX H

EMI Test Log

EMI Test Log

Manufacturer:	A Major Difference	Project Number:	A71127	
Model:	IonCleanse	S/N:	08000	
Customer Representative:	Neill Moroney			
Standard Referenced:	EN61000-6-1 & EN55011/FCC Part 15			
				FR0105

Time	Result	Initial
(hrs)		minals
(111.5)		
2.0	Pass	TW
2.0	1 400	
1.0	Pass	KJ
1.0	Pass	KJ
8.0		BN
0.0		DIN
2.0	Pass	BN
1.0	Pass	BN
1.0	Pass	BN
0.0	Pass	BN
	- 400	
5.0	Pace	BN
		BN
5.0	1 455	DIN
-	5.0 3.0	

EMI Test Log

Manufacturer:	A Major Difference	Project Number:	A71127	
Model:	IonCleanse	S/N:	08000	
Customer Representative:	Neill Moroney			
Standard Referenced:	EN61000-6-1 & EN55011/FCC Part 15	-		
		-		FR0105

						110105
Test	Test	Date	Event	Time	Result	Initials
	Code			(hrs)		
			Figure A3: Figure A4 and Figure A5: No Contact Discharges.			
			Figure A6 and Figure A7: Contact Discharges at +/-4kV Only.			
4-3	4344	November 29,	Performed RF Immunity, 80-1000 MHz	4.0	Pass	TW
		2007				
4-3	4391		Performed RF Immunity, 1400-2000 MHz	1.0	Pass	TW
4-3	4391		Performed RF Immunity, 2000-2700 MHz	1.0	Pass	TW
3-2	3302		Performed Flicker	2.0	Pass	TW

APPENDIX I

Laboratory Accreditation

Nemko Laboratory Authorization Authorization: ELA 215

EMC Laboratory: EMC Integrity, Inc. 1736 Vista View Drive Longmont, Colorado 80504 USA

Scope of Authorization: Authorization: All CENELEC standards [ENs] for EMC that are listed on the accompanying page, and all of the corresponding CISPR, IEC and ISO EMC standards that are listed on the accompanying page.

Nemko has assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against <u>ISO/IEC 17025</u> or equivalent. The laboratory also fulfils the conditions described in Nemko Document <u>NLA -10</u>. During the visit by the Nemko representative it was found that the Laboratory is capable of performing tests within the Scope of the Authorisation.

Accordingly, Nemko will normally accept test results from the laboratory on a partial or complete basis for certification of the products.

In order to maintain the Authorisation, the information given in the pertinent NLA-10 must be carefully followed. Nemko is to be promptly notified about any changes in the situation at the Laboratory, which may affect the basis for this Authorisation. The Authorisation may be withdrawn at any time if the conditions are no longer considered to be fulfilled.

The Authorisation is valid through December 31, 2008.

Dallas, Texas, USA. For and on behalf of Nemko AS:

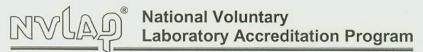
Katarlin

T.B. Ketterling, **V** Nemko ELA Co-ordinator Region: North America

 Nemko AS
 Gaustadalléen 30
 P.O.Box 73 Blindern
 No14 Oslo
 Norway
 T +47 22 96 03 30
 F +47 22 96 05 50
 Enterprise number NO974404532

 1(2)

Nemko Laboratory Authorization Authorization: ELA 215


SCOPE OF AUTHORIZATION

Capability to perform a basic test implies also that any product (family) standard calling up this basic test is also within the scope if mentioned below or not.

Ge	neric & Product – Family Stan	dards
EN 55011 :1998+A1 :1999 +A2 :2002 CISPR 11:1997 (Modified) + A1:1999 + A2:2002 CISPR 11 Ed. 4.1	EN 55014-1:2000 + A1:2001 + A2:2002 CISPR 14-1:2000 + A1:2001 + A2:2002 CISPR 14-1 Ed, 5.0	EN 55022: 1998+ A1:2000, +A2:2003 CISPR 22: 2003+ A1:2004 EN55022:2006 CISPR 22:2005 (Modified)
	EN 55014-2:1997 + A1:2001 CISPR 14-2:1997 + A1:2001 CISPR 14-2 Ed. 1.1	CISPR 22 Ed. 5.2
EN 55024: 1998 +A1:2001, +A2:2003 CISPR 24: 1997 +A1:2001, +A2:2002 CISPR 24 Ed. 1.0	EN 61000-6-1 :2007 IEC 61000-6-1 Ed. 2.0 EN 61000-6-1: 2001	EN 61000-6-2:2005 IEC 61000-6-2 Ed. 2.0
EN 61000-6-3 :2007 EC 61000-6-3 Ed. 2.0 EN 61000-6-3: 2001 + A1 :2004	IEC 61000-6-2 Ed. 2.0 EN 61000-6-2: 2005 IEC 61000-6-2: 2005 EN 61000-6-2: 2001	EN 61326:1997 +A1:1998 + A2:2001 +A3:2003 IEC 61326:1997 + A1:1998 + A2:2000 IEC 61326:2002-02
EN 60601-1-2:2001 EC 60601-1-2:2001	EN 55103-1:1996 EN 55103-2:1996	EN 300 386 V.1.3.1 EN 300 386 V.1.3.3
EN 60601-1-2:2006 EC 60601-1-2 Ed. 2.1		
EN 61000-3-3: 1995, +A1:2001 +A2:2005 IEC 61000-3-3: 1994, +A1:2001 +A2:2005	EN 61000-3-2: 2000 +A2 :2005 IEC 61000-3-2: 2000 (Modified) +A1:2001 +A2:2004	BLANK
	Basic Standards	
EN 61000-4-2:1995, +A1:1998, +A2:2000 IEC 61000-4-2:1995, +A1:1998, +A2:2000 IEC 61000-4-2 Ed. 1.2	EN 61000-4-3:2002, +A1:2002 IEC 61000-4-3:2002, +A1:2002 EN 61000-4-3:2006 +A1:2006 +A2:2006 IEC 61000-4-3 Ed. 3.0	EN 61000-4-4:1995, +A1:2002, +A2:2002 IEC 61000-4-4:1995, +A1:2000, +A2:2001 EN 61000-4-4:2004 IEC 61000-4-4 Ed. 2.0
EN 61000-4-5:1995, +A1:2001 IEC 61000-4-5:1995, +A1:2000 EN 61000-4-5:2006 IEC 61000-4-5 Ed. 2.0	EN 61000-4-6:1996, +A1:2001 IEC 61000-4-6:1996, +A1:2000 EN 61000-4-6 : 2006 IEC 61000-4-6 Ed. 2.2	EN 61000-4-8:1994,+A1:2001 IEC 61000-4-8:1994,+A1:2001 IEC 61000-4-8 Ed. 1.1
EN 61000-4-11:2004 IEC 61000-4-11 Ed. 2.0 EN 61000-4-11:1994, +A1:2000 IEC 61000-4-11:1994, +A1:2000	BLANK	BLANK

2(2)

NLA 3 ED3

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005

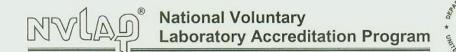
EMC Integrity, Inc. 1736 Vista View Drive Longmont, CO 80504 Mr. Vincent W. Greb Phone: 303-776-7249 Fax: 303-776-7314 E-Mail: vinceg@emcintegrity.com URL: http://www.emcintegrity.com

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

NVLAP LAB CODE 200737-0

NVLAP Code Designation / Description

Emissions Tes	st Methods:
12/100063c	IEC 61000-6-3 (1996), EN 61000-6-3 (2001), A1 (2004): Electromagnetic Compatibility (EMC) - Part 6: Generic standards - Section 3: Emission standard for residential, commercial, and light-industrial environments.
12/CIS11f	AS/NZS CISPR 11 (2002): Industrial, scientific and medical (ISM) radio frequency equipment - Electromagnetic disturbance characteristics - Limits and methods of measurement
12/CIS1 <mark>1</mark> g	IEC/CISPR 11, Ed. 4.1 (2004-06): Industrial, scientific and medical (ISM) radio-frequency equipment - Electromagnetic disturbance characteristics - Limits and methods of measurements
12/CIS11h	AS/NZS CISPR 11 (2004): Industrial, scientific and medical (ISM) radio frequency equipment - Electromagnetic disturbance characteristics - Limits and methods of measurement
12/CIS11i	IEC/CISPR 11, Ed. 4.1 (2004-06) + A1(2004): Industrial, scientific and medical (ISM) radio frequency equipment - Electromagnetic disturbance characteristics - Limits and methods of measurement


2007-07-01 through 2008-06-30

Effective dates

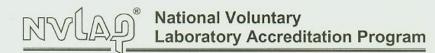
D. Buce

For the National Institute of Standards and Technology

Page 1 of 6

NVLAP LAB CODE 200737-0

ENT OF


STATES O

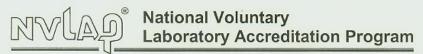
NVLAP Code	Designation / Description
12/CIS11j	EN 55011 (1998) + A1(1999), A2(2002): Industrial, scientific and medical (ISM) radio frequency equipment - Electromagnetic disturbance characteristics - Limits and methods of measurement
12/CIS11k	IEC/CISPR 11 (2003), EN 55011 (1998), A2(2002): Limits and Methods of Measurement of Electromagnetic Disturbance Characteristics of Industrial, Scientific, and Medical Radio-Frequency Equipment
12/CIS14b1	AS/NZS CISPR 14-1 (2003): Electromagnetic Compatibility - Requirements for household appliances, electric tools and similar apparatus - Part 1: Emission
12/CIS14x	IEC/CISPR 14-1, Ed. 4 (2003): Electromagnetic Compatibility - Requirements for household appliances, electric tools and similar apparatus - Part 1: Emission
12/CIS22	IEC/CISPR 22 (1997) & EN 55022 (1998) + A1(2000): Limits and methods of measurement of radio disturbance characteristics of information technology equipment
12/CIS22a	IEC/CISPR 22 (1993) and EN 55022 (1994): Limits and methods of measurement of radio disturbance characteristics of information technology equipment, Amendment 1 (1995) and Amendment 2 (1996)
12/CIS22a4	IEC/CISPR 22 (1993) & EN 55022 (1994)+A1(1995), A2(1997): Limits and methods of measurement of radio disturbance characteristics of information technology equipment
12/CIS22b	CNS 13438 (1997): Limits and Methods of Measurement of Radio Interference Characteristics of Information Technology Equipment
12/CIS22c	IEC/CISPR 22, Fourth Edition (2003-04) & EN 55022 (1998): Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement
12/CIS22c1	IEC/CISPR 22, Edition 5 (2005) and EN 55022 (1998): Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement

2007-07-01 through 2008-06-30 Effective dates For the National Institute of Standards and Technology

the National Institute of Standards and Technolog

Page 2 of 6

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS


NVLAP LAB CODE 200737-0

NVLAP Code	Designation / Description
12/CIS22c3	IEC/CISPR 22, Edition 5 (2005) + A1(2005): Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement
12/CIS22c4	EN 55022 (1998) + A1(2000) + A2(2003): Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement
12/EM02d	IEC 61000-3-2, Edition 2.2 (2004-11): Electromagnetic compatibility (EMC) - Part 3-2: Limits - Limits for harmonic current emissions (equipment input current <= 16 A per phase)
12/EM03b	IEC 61000-3-3, Edition 1.1(2002-03) & EN 61000-3-3, A1(2001): EMC - Part 3-3: Limits - Limitations of voltage changes, voltage flucuations and flicker, in public low-voltage supply-systems, for equipment with rated current <=16 A per phase and not subject to conditional connections
12/EM03g	IEC 61000-3-3, Edition 1.1 (2003) +A2 (2005): EMC Part 3-3: Limits - Limitations of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems, for equipment with rated current <= 16 A per phase and not subject to conditional connections
12/F18	FCC OST/MP-5 (1986): FCC Methods of Measurement of Radio Noise Emissions for ISM Equipment (cited in FCC Method 47 CFR Part 18 - Industrial, Scientific, and Medical Equipment)
12/FCC15b	ANSI C63.4 (2003) with FCC Method 47 CFR Part 15, Subpart B: Unintentional Radiators
12/KN22	KN22 with RRL Notice No. 2005-82 (Sept. 29, 2005): RRL Notice No. 2005-82: Technical Requirements for Electromagnetic Interference Annex 8 (KN-22), RRL Notice No. 2005-131: Conformity Assessment Procedures for Electromagnetic Interference
12/T51	AS/NZS CISPR 22 (2002) and AS/NZS 3548 (1997): Electromagnetic Interference - Limits and Methods of Measurement of Information Technology Equipment
12/VCCIa	VCCI: Agreement of Voluntary Control Council for Interference by Information Technology Equipment - Technical Requirements: V-3/2005.04

2007-07-01 through 2008-06-30

Effective dates

For the National Institute of Standards and Technology

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

NVLAP LAB CODE 200737-0

NVLAP Code	Designation / Description
Immunity Test	Methods:
12/610006h	IEC 61000-6-1, 2nd edition (2005-03): Electromagnetic compatibility (EMC) - Part 6: Generic standards - Section 1: Immunity for residential, commercial and light-industrial environments
12/610006i	IEC 61000-6-2, Edition 2.0 (2005-01): Electromagnetic compatibility (EMC) - Part 6-2: Generic standards - Immunity for industrial environments
12/I01b	IEC 61000-4-2 (2001); EN 61000-4-2 (2001), A2 (2001): Electrostatic Discharge Immunity Test
12/I01c	EN 61000-4-2 +A1(1998) +A2(2001): Electrostatic Discharge Immunity Test
12/І02Ь	IEC/EN 61000-4-3, Ed. 2.1 (2002), A1 (2002); EN 61000-4-3: Radiated, radio-frequency, electromagnetic field immunity test
12/I02e	EN 61000-4-3 (2002) + A1(2002) + IS1(2004): Radiated, radio-frequency, electromagnetic field immunity test
12/I02f	EN 61000-4-3 (2002) + A1(2002): Radiated, radio-frequency, electromagnetic field immunity test
12/I03c	IEC 61000-4-4, Ed. 2.0 (2004-07): Electromagnetic compatibility (EMC) - Part 4-4: Testing and measurement techniques - Electrical fast transient/burst immunity test
12/I04b	IEC 61000-4-5 (2001), A1(2000); EN 61000-4-5(2001), A1(2000): Surge Immunity Test
12/I05d	IEC 61000-4-6, Ed. 2.1 (2004); EN 61000-4-6: Electromagnetic compatibility (EMC) - Part 4-6: Testing and measurement techniques - Immunity to conducted disturbances, induced by radio-frequency fields
12/I05e	EN 61000-4-6 (1996) + A1 (2001) + IS1(2004): Immunity to Conducted Disturbances, Induced by Radio Frequency Fields

2007-07-01 through 2008-06-30

Effective dates

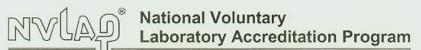
For the National Institute of Standards and Technology

r the National Institute of Standards and Technology NVLAP-01S (REV. 2005-05-19)

Page 4 of 6

Rev. B

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS


NVLAP LAB CODE 200737-0

NVLAP Code	Designation / Description
12/106Ь	IEC 61000-4-8 (2001), A1(2000); EN 61000-4-8 (2001),A1(2000): Power Frequency Magnetic Field Immunity Test
12/I06c	EN 61000-4-8 (1993) + A1 (2001): Power Frequency Magnetic Field Immunity Test
12/I07c	IEC 61000-4-11, Ed. 2 (2004-03) & EN 61000-4-11: Electromagnetic compatibility (EMC) - Part 4-11: Testing and measurement techniques - Voltage dips, short interruptions and voltage variations immunity tests
12/I07e	EN 61000-4-11 (1994), A1 (2001): Voltage Dips, Short Interruptions and Voltage Variations Immunity Tests
12/107f	EN 61000-4-11 (2004): Voltage Dips, Short Interruptions and Voltage Variations Immunity Tests
12/KN11a	KN 61000-4-11 with RRL Notice No. 2005-130 (Dec 27, 2005): Voltage Dips, Short Interruptions and Voltage Variations Immunity Tests
12/KN24	KN24 (December 2005) with RRL Notice No. 2005-83: Information Technology Equipment - immunity charateristics - limits and methods of measurements
12/KN2a	KN 61000-4-2 with RRL Notice No. 2005-130 (Dec. 27, 2005): Electrostatic Discharge Immunity Test
12/KN3a	KN 61000-4-3 with RRL Notice No. 2005-130 (Dec. 27, 2005): Radiated, radio-frequency, electromagnetic field immunity test
12/KN4a	KN 61000-4-4 with RRL Notice No. 2005-130 (Dec. 27, 2005): Electromagnetic compatibility (EMC): Testing and measurement techniques - Electrical Fast Transient/Burst Immun
12/KN5a	KN 61000-4-5 with RRL Notice No. 2005-130 (Dec. 27, 2005): Surge Immunity Test
12/KN6a	KN 61000-4-6 with RRL Notice No. 2005-130 (Dec. 27, 2005): Electromagnetic compatibility (EMC): Testing and measurement techniques - Immunity to conducted disturbances,

2007-07-01 through 2008-06-30 Effective dates

For the National Institute of Standards and Technology

Page 5 of 6

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

NVLAP LAB CODE 200737-0

NVLAP Code Designation / Description

12/KN8a

KN 61000-4-8 with RRL Notice No. 2005-130 (Dec. 27, 2005): Power Frequency Magnetic Field Immunity Test

2007-07-01 through 2008-06-30

Effective dates Page 6 of 6

Sally D. Buce > For the National Institute of Standards and Technology

2007-07-01 through 2008-06-30	is accredited by the National Voluntary Laboratory Accreditation Program for specific services, listed on the Scope of Accreditation, for: ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIO This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated 18 June 2005).	EMC Integrity, Inc. Longmont, CO	Certificate of Accreditation to ISO/IEC 17	NN	United States Department of Commerce National Institute of Standards and Technology
For the National Institute of Standards and Technology	tion Program for specific services, ion, for: D TELECOMMUNICATIONS ernational Standard ISO/IEC 17025:2005, cope and the operation of a laboratory quality nunique dated 18 June 2005).	nc.	ISO/IEC 17025:2005	- 5 ,	r Commerce and Technology

END OF REPORT