

1736 Vista View Drive | Longmont, CO 80504 | tel: 303.776.7249 | fax: 303.776.7314 | info@emcintegrity.com

| Test Report Number:        | ETRA71127, Rev. B                                |
|----------------------------|--------------------------------------------------|
| <b>Reference Standard:</b> | EN 55011: 2007, Class A, Group 1,<br>FCC Part 18 |
| Date of Test:              | 14 November 2007                                 |
| Date of Report:            | 15 January 2008                                  |
| Product Name:              | IonCleanse Premier                               |
| Model Number:              | IonCleanse Premier                               |
| Serial Number:             | 08000                                            |
| Manufacturer:              | A Major Difference                               |
| Representative:            | Neill Moroney                                    |
| Report Type:               | <b>Radiated and Conducted Emissions</b>          |
| Test Result:               | Compliant                                        |
| Approved By:               | Chin K. Poon                                     |



The results contained within this report relate only to the product tested. This report shall not be reproduced, except in full, without written approval from EMC Integrity, Inc. This report must not be used by the client to claim product certification, approval, or endorsement by EMC Integrity, NEMKO, NVLAP, NIST, or any agency of the federal government.

## **Prepared for:**

A Major Difference 2950 S Jamaica Ct. Suite 300 Aurora, CO 80014 Phone: 303-755-0112 Fax: 303-755-3022

## **Customer Representative:**

Neill Moroney Vice-President

#### **Tested at:**

EMC Integrity, Inc. 1736 Vista View Drive Longmont, Colorado 80504

## **Tested by:**

Tom Wittig Lead Technician

## **Report Prepared by:**

Mary Burback Office Manager

## **Report Approved by:**

Chris Poore Laboratory Manager

| Revision | Description of Revision                                                                    | Date:            |
|----------|--------------------------------------------------------------------------------------------|------------------|
| Rev      | Initial Release                                                                            | 17 December 2007 |
| Rev. A   | Changed name of manufacturer from Stargate<br>International to "A Major Difference"        | 10 January 2008  |
| Rev. B   | Changed description of device from "body detoxification" to "vitality enhancement system." | 15 January 2008  |
|          |                                                                                            |                  |

# **TABLE OF CONTENTS**

| Test Summary          | Section # |
|-----------------------|-----------|
|                       |           |
| Test Environment      | 2.0       |
| Radiated Emissions    |           |
| Conducted Emissions   | 4.0       |
| AC Power Line Flicker | 5.0       |

# **LIST OF APPENDICES**

| Radiated Emissions Test DataA                  | PPENDIX A |
|------------------------------------------------|-----------|
| Conducted Emissions Test Data, 115 Vac/60 Hz A | PPENDIX B |
| Conducted Emissions Test Data, 230 Vac/50 Hz A | PPENDIX C |
| AC Power Line Flicker Test DataA               | PPENDIX D |
| Product Data SheetA                            | PPENDIX E |
| EMI Test LogA                                  | PPENDIX F |
| Laboratory AccreditationsA                     | PPENDIX G |

# 1.0 TEST SUMMARY

## **1.1 Product Description**

The unit under test (UUT) was the IonCleanse Premier. The Serial Number tested was 08000. This product is manufactured by A Major Difference located in Aurora, Colorado. It is a vitality enhancement system. A more complete description of this product may be found in the Product Data Sheet, located in Appendix E of this report.

## 1.2 Purpose

This report documents the test efforts performed on the IonCleanse Premier to verify compliance to the Class A, Group 1 limits of EN 55011: 2007 and FCC Part 18. This was a formal qualification test and was conducted on 14 November 2007.

## **1.3** Test Standards Used

The emission limits applied to the product tested are defined in EN 55011: 2007, which is the product family standard for Industrial, Scientific and Medical (ISM) equipment. The UUT was set up as specified in ANSI C63.4: 2003.

The normative references of this standard define the test methods used for the emissions testing. These standards are contained in Table 1-1.

| CISPR 11: 2004 + A2: 2006 | EN 55011: 2007                                  |
|---------------------------|-------------------------------------------------|
| CISPR 22: 2006            | EN 55022: 1998 + A1 (2000) + A2 (2003)          |
| CFR 47, FCC Parts 15 & 18 | EN 61326: 1997 + A1: 1998 + A2: 2001 + A3: 2003 |
| EN 60601-1-2: 2001        | EN 55103-1: 1997                                |
| EN 61000-6-3: 2001        | EN 61000-6-4: 2001                              |
| ANSI C63.4: 2003          | CISPR 16-1: 2002                                |

<u>Table 1-1</u>

## **1.4** Test Results

The UUT **complied** with the Class A, Group 1 emission requirements defined by EN 55011: 2007, and with FCC Part 18. The UUT also complied with the requirements for AC power line flicker, as defined by IEC and EN 61000-3-3. Test data is contained in the appropriate appendices of this report.

## **1.5** Modifications Required for Compliance

No modifications were required for compliance with emissions.

# 2.0 TEST ENVIRONMENT

## 2.1 Radiated Emissions Test Site

Radiated emissions testing was performed at a distance of 10-meters in a semi-anechoic 10meter chamber. This chamber is calibrated annually and meets the volumetric site attenuation requirements of ANSI C63.4: 2003 at a distance of 10 meters. For measurements from 30 MHz to 2 GHz, a biconilog antenna is used in conjunction with a high-gain, low-noise preamplifier. This is connected to an HP 8566B spectrum analyzer with an HP 85650A Quasi-Peak (QP) Adapter, via an HP 85685 RF Preselector.

Radiated emissions testing is broken into two parts: pre-scan and QP/maximization. Prescanning a product from 30 MHz to 2 GHz consists of measuring peak emissions from eight radials (every 45 degrees), at four antenna heights (1 m, 2 m, 3 m and 4 m) for both antenna polarities. Data is recorded in a graph showing amplitude vs. frequency of the emissions, and frequencies for QP/maximization are chosen based on this graph. The procedure for maximizing emissions is as follows:

- 1. The analyzer is tuned to the frequency associated with the emissions having the least margin.
- 2. The turntable and antenna mast are moved to the location where the maximum emission was measured during the pre-scan.
- 3. Both are then oriented such that the maximum emission is obtained.
- 4. Cables on the UUT are manually manipulated to achieve the maximum emission.
- 5. The turntable and antenna mast are then re-adjusted to ensure a maximum reading.
- 6. If the signal in question is less than 1 GHz, quasi-peak detection is performed on the signal for a minimum of 10 seconds. For signals greater than 1 GHz, video averaging is performed.
- 7. Turntable/antenna mast maximization and QP detection are performed on all other signals within 6 dB of the limit. In the event that there are not six signals within 6 dB of the limit, the highest six signals are maximized. This ensures that a minimum of six signals are maximized and appear in the final data table.

## 2.2 Conducted Emissions Test Site

Conducted emissions testing was performed on a 10' by 10' ground plane, which is bonded to the wall of the 10-meter chamber, using its wall as the vertical coupling plane. Line impedance stabilization networks (LISNs) was inserted in series with both the UUT and the support equipment. The LISNs used were standard 50  $\Omega/50$  uH LISNs which complied with the requirements of ANSI C63.4. These LISNs are calibrated annually for both complex impedance and insertion loss. Measurement equipment used was an HP 8566B spectrum analyzer with an HP 85650A QP adapter. In addition, a transient limiter and a high-pass filter are used to protect the front-end of the receiver from transients and low-frequency noise, respectively.

## 2.3 Measurement Uncertainty

The measurement uncertainty for EMC Integrity's emissions test facility complies with the requirements defined in CISPR 16. The complete calculations of EMC Integrity's measurement uncertainty is contained in an EMCI memo, which is available upon request. However, a summary of EMCI's measurement uncertainty is given in Table 2-1.

| Test                                     | Requirement | Actual  |
|------------------------------------------|-------------|---------|
| Conducted Emissions                      | 3.60 dB     | 3.04 dB |
| Radiated Emissions – Horizontal Polarity | 5.20 dB     | 4.67 dB |
| Radiated Emissions – Vertical Polarity   | 5.20 dB     | 5.01 dB |

## **Table 2-1**

## 3.0 Radiated Emissions

## 3.1 Summary of Test Results

Radiated electric field emissions were measured on the UUT over the frequency range from 30 MHz to 1 GHz. The UUT was powered from 230 Vac/50 Hz, configured in its normal operating mode, and exercised continually during testing. Cables were oriented such that the maximum emission was achieved and quasi-peak detection was performed all signals (minimum of six) used in the final data table.

Test result:CompliantMargin:2.75 dB @ 96.444 MHz

## 3.2 Test Setup

The UUT was set up in accordance with ANSI C63.4: 2003 and tested to the Class A, Group 1 limits specified in EN 55011 and FCC Part 18.

## **3.3** Special Configurations

Not applicable.

## **3.4 Deviations from Test Procedures**

Not applicable.

#### 3.5 Test Data

See APPENDIX A for all test data sheets, test setup pictures and test equipment used.

## 4.0 Conducted Emissions

## 4.1 Summary of Test Results

Conducted emissions were measured on the AC power input of the UUT over the frequency range from 150 kHz to 30 MHz. With the UUT configured in its normal operating mode, testing was performed with UUT powered from 115 Vac/60 Hz and 230 Vac/50 Hz. The input power to both the UUT and the support equipment was run through standard 50  $\Omega$ /50 uH line impedance stabilization networks (LISNs) which complied with the requirements of ANSI C63.4. Emissions were compared to both quasi-peak (QP) and average limits, with QP detection and averaging performed on the six highest signals.

## 115 Vac/60 Hz

Test result:CompliantMargin:13.85 dB @ 14.881 MHz

## 230 Vac/50 Hz

| Test result: | Compliant            |
|--------------|----------------------|
| Margin:      | 13.25 dB @ 6.209 MHz |

## 4.2 Test Setup

The UUT was set up in accordance with ANSI C63.4: 2003 and tested to the Class A, Group 1 limits specified in EN 55011 and FCC Part 18.

#### 4.3 Special Configurations

Not applicable.

## 4.4 Deviations from Test Procedures

Not applicable.

#### 4.5 Test Data

See APPENDICES B and C for all test data sheets, test setup pictures and test equipment used.

## 5.0 EN 61000-3-3: 1995 + A1 (01) + A2 (03) + A3 (06), Power Line Flicker

## 5.1 Summary of Test Results

Power line flicker from the UUT was measured on the system's AC power input. The power source was a 230 Vac/50 Hz source. Integral to the power source was the measurement hardware/firmware and flicker was recorded to the computer. Results are then imported via soft copy to the test data sheet.

The UUT complied with the flicker requirements of EN 61000-3-3.

## 5.2 Test Setup

The UUT was set up per EN 61000-3-3.

## 5.3 Special Configurations

N/A

## 5.4 Performance Criteria

Defined in EN 61000-3-3.

## 5.5 Deviations from Test Procedures

N/A

## 5.6 Test Data

See APPENDIX D for data sheets and test setup pictures.

## 5.7 Temperature and Humidity

Temperature, relative humidity and barometric pressure are located in the header table for the EN 61000-3-3 test data sheet.

# **APPENDIX** A

# **Radiated Emissions Test Data**



#### Radiated Emissions, CISPR / EN 55011

|         | Manu          | facturer: | A Major Diffe            | rence         |          | Project Number:     | A71127             |
|---------|---------------|-----------|--------------------------|---------------|----------|---------------------|--------------------|
| Cus     | tomer Repres  | entative: | Neill Moroney            |               |          | Test Area:          | 10 Meter           |
|         |               | Model:    | IonCleanse Pre           | emier         |          | S/N:                | 08000              |
|         | Standard Ref  | erenced:  | EN 55011: 20             | 07            |          | Date:               | November 14, 2007  |
|         | Tem           | perature: | 22°C                     | Humidit       | ty: 25%  | Pressure:           | 844 mb             |
|         | Input         | Voltage:  | 230Vac/50Hz              |               |          |                     |                    |
| (       | Configuration | of Unit:  | Normal Operat            | tion Mode #1  |          |                     |                    |
|         | Test E        | ingineer: | Tom Wittig               |               |          |                     |                    |
| A71127- | 11-RE.doc     | -         |                          |               |          |                     | FR0100             |
| Туре    | Frequency     | Level     | Transducer               | Gain / Loss   | Final    | Azm(deg)/Pol/Hgt(m) | Margin: EN55011    |
|         | (MHz)         | (dBuV)    | ( <b>dB</b> / <b>m</b> ) | ( <b>dB</b> ) | (dBuV/m) |                     | Class B Group 1 QP |
|         | . ,           | , í       | . ,                      |               | , ,      |                     | (dB)               |
| QP      | 36.009        | 38.7      | 16.6                     | -29.7         | 25.7     | 6/V-Pole/1.00       | 4.34               |
| QP      | 96.444        | 48.0      | 9.3                      | -30.0         | 27.2     | 132/V-Pole/4.00     | 2.75               |
| QP      | 132.045       | 35.4      | 13.8                     | -29.8         | 19.4     | 138/V-Pole/2.98     | 10.56              |
| QP      | 174.061       | 34.0      | 11.6                     | -29.4         | 16.1     | 148/V-Pole/1.20     | 13.86              |
| QP      | 181.062       | 38.9      | 11.3                     | -29.5         | 20.8     | 123/V-Pole/1.20     | 9.24               |

The highest emission measured was at 96.444 MHz, which was 2.75 dB below the limit.

-29.5

-29.2

"Type" refers to the type of measurement performed. The type of measurement made is based on the requirements of the particular standard:

19.8

28.8

131/V-Pole/1.30

114/V-Pole/4.00

• PK = Peak Measurement

38.0

40.0

- QP = Quasi-Peak Measurement
- AV = Video Average Measurement

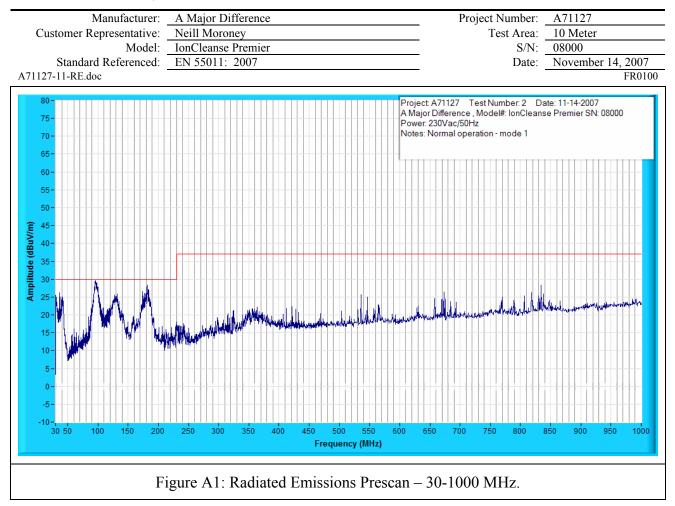
11.3

18.0

- The "Final" emissions level is attained by taking the "Level" and adding the "Transducer" factor and the "Gain/Loss" factor. Final measurements are made with the Azimuth, Polarity, Height, and EUT Cables positioned for maximum radiation. If applicable, cables positions are noted in the test log.
- > The "Azm/Pol/Hgt" indicates the turn-table *azimuth*, the antenna *polarity*, and the antenna *height* where the maximum emissions level was measured.
- > The "Margin" is with reference to the emissions limit. A positive number indicates that the emission measurement is below the limit. A negative number indicates that the emission measurement exceeds the limit.

OP

OP

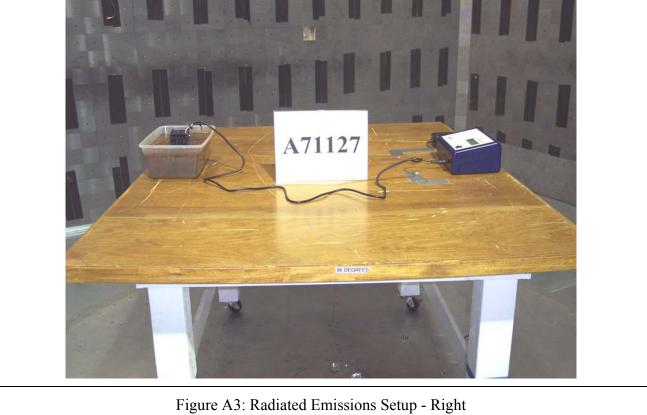

182.062

537.244

10.21

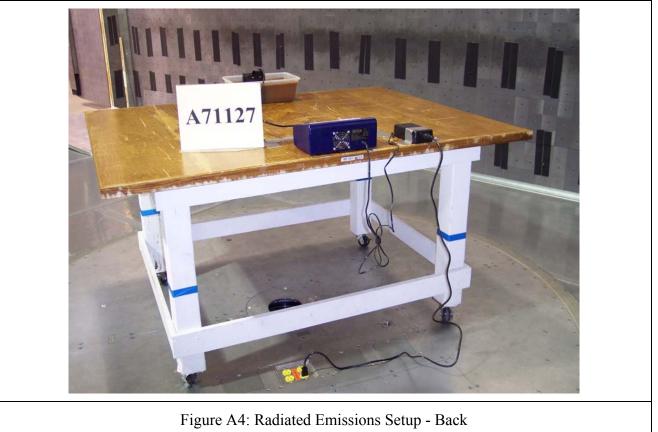
8.17





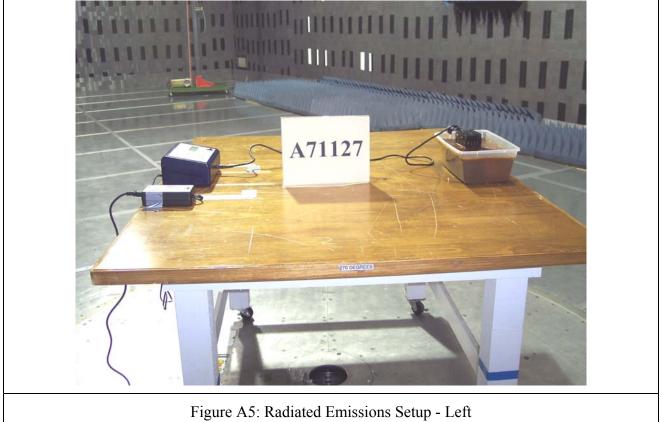



| Manufacturer:            | A Major Difference                | Project Number: | A71127            |
|--------------------------|-----------------------------------|-----------------|-------------------|
| Customer Representative: | Neill Moroney                     | Test Area:      | 10 Meter          |
| Model:                   | IonCleanse Premier                | S/N:            | 08000             |
| Standard Referenced:     | EN 55011: 2007                    | Date:           | November 14, 2007 |
| A71127-11-RE.doc         |                                   |                 | FR0100            |
|                          |                                   |                 |                   |
|                          | Figure A2: Radiated Emissions Set | up - Front      |                   |




| Manufacturer:            | A Major Difference | Project Number: | A71127            |
|--------------------------|--------------------|-----------------|-------------------|
| Customer Representative: | Neill Moroney      | Test Area:      | 10 Meter          |
| Model:                   | IonCleanse Premier | S/N:            | 08000             |
| Standard Referenced:     | EN 55011: 2007     | Date:           | November 14, 2007 |
| A71127-11-RE.doc         |                    |                 | FR0100            |
|                          |                    |                 |                   |






| Manufacturer:            | A Major Difference | Project Number: | A71127            |
|--------------------------|--------------------|-----------------|-------------------|
| Customer Representative: | Neill Moroney      | Test Area:      | 10 Meter          |
| Model:                   | IonCleanse Premier | S/N:            | 08000             |
| Standard Referenced:     | EN 55011: 2007     | Date:           | November 14, 2007 |
| A71127-11-RE.doc         |                    |                 | FR0100            |





| Manufacturer:            | A Major Difference | Project Number: | A71127            |
|--------------------------|--------------------|-----------------|-------------------|
| Customer Representative: | Neill Moroney      | Test Area:      | 10 Meter          |
| Model:                   | IonCleanse Premier | S/N:            | 08000             |
| Standard Referenced:     | EN 55011: 2007     | Date:           | November 14, 2007 |
| A71127-11-RE.doc         |                    | _               | FR0100            |
|                          |                    |                 |                   |





## Radiated Emissions, CISPR / EN 55011

| Manufacturer:            | A Major Difference | Project Number: | A71127            |
|--------------------------|--------------------|-----------------|-------------------|
| Customer Representative: | Neill Moroney      | Test Area:      | 10 Meter          |
| Model:                   | IonCleanse Premier | S/N:            | 08000             |
| Standard Referenced:     | EN 55011: 2007     | Date:           | November 14, 2007 |
| A71127-11-RE.doc         |                    |                 | FR0100            |

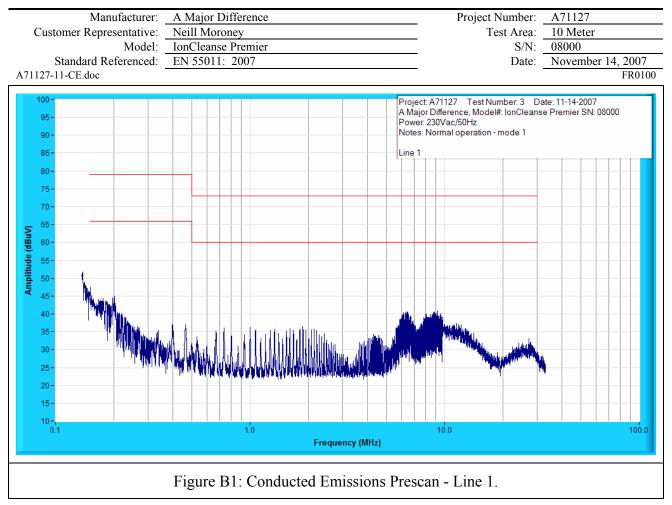
| ID<br>Number | Manufacturer       | Model #     | Serial #   | Description                                      | Cal Date   | Cal Due    |
|--------------|--------------------|-------------|------------|--------------------------------------------------|------------|------------|
| 1092         | Hewlett<br>Packard | 8495B       | 2522A10285 | 0 - 70 dB Step Attenuator                        | 07/23/2007 | 07/23/2008 |
| 1220         | Mini-Circuits      | ZKL-2       | 062906     | Preamp, 10 - 2000 MHz, 30 dB                     | 02/02/2007 | 02/02/2008 |
| 1229         | Hewlett<br>Packard | 85685A      | 3010A01077 | RF Preselector                                   | 06/12/2007 | 06/12/2008 |
| 1231         | Sunol Sciences     | JB1         | A071605-1  | Bilog Antenna, 30 MHz to 2.0<br>GHz              | 10/12/2007 | 10/12/2008 |
| 1232         | Sunol Sciences     | JB1         | A071605-2  | Bilog Antenna, 30 MHz to 2.0<br>GHz              | 07/23/2007 | 07/23/2008 |
| 1233         | Sunol Sciences     | SC104V      | 110305-1   | Positioning Controller                           | NA         | NA         |
| 1234         | CIR<br>Enterprises | 10m Chamber | 001        | 10m Radiated Emissions Semi-<br>Anechoic Chamber | 05/05/2007 | 05/05/2008 |
| 1238         | Sunol Sciences     | TWR95-4     | 110305-3   | Antenna Mast                                     | NA         | NA         |
| 1239         | Sunol Sciences     | FM2522VS    | 110305-2   | Turn Table, 2.5m Diameter                        | NA         | NA         |
| 1263         | Hewlett<br>Packard | 8566B       | 3014A06873 | Spectrum Analyzer, 100 Hz to 22<br>GHz           | 08/21/2007 | 08/21/2008 |
| 1264         | Hewlett<br>Packard | 85662A      | 2848A18247 | Spectrum Analyzer Display                        | 08/21/2007 | 08/21/2008 |
| 1265         | Hewlett<br>Packard | 85650A      | 2521A00641 | Quasi-Peak Adapter                               | 08/21/2007 | 08/21/2008 |

# Test Equipment List

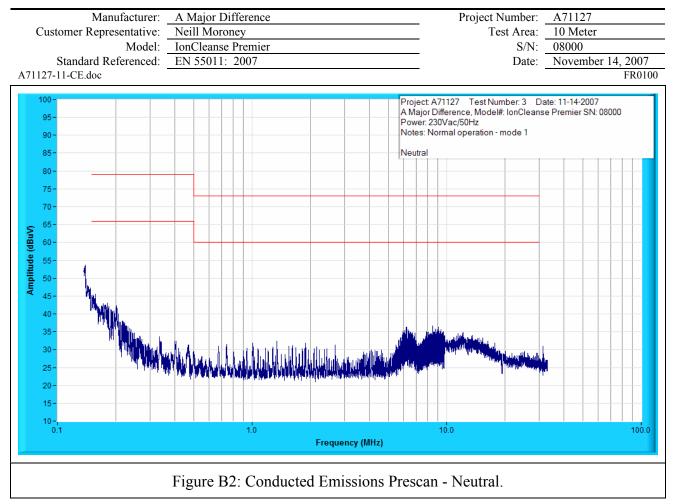
# **APPENDIX B**

# Conducted Emissions Test Data 115 Vac/60 Hz




#### Conducted Emissions, CISPR / EN 55011

|        | Manu          | facturer: | A Major Diffe  | rence              |                |            | Project Number:   | A71127            |
|--------|---------------|-----------|----------------|--------------------|----------------|------------|-------------------|-------------------|
| Cus    | stomer Repres | entative: | Neill Moroney  | Neill Moroney      |                |            | Test Area:        | 10 Meter          |
|        | 1             | Model:    | IonCleanse Pro | IonCleanse Premier |                |            | S/N:              | 08000             |
|        | Standard Ref  | erenced.  | EN 55011 20    | EN 55011: 2007     |                |            | Date:             | November 14, 2007 |
|        |               | perature: | 20°C           |                    | y: 25%         | <u> </u>   |                   | 844mb             |
|        |               | Voltage:  | 115Vac/60Hz    |                    | y. <u>2570</u> |            | 1 1055ure.        | 0 T IIIO          |
|        | Configuration |           | Normal Opera   | tion Mode #1       |                |            |                   |                   |
|        | e             | ingineer: | Tom Wittig     | tion wode #1       |                |            |                   |                   |
| 471127 | -11-CE.doc    | ingineer. | Tom while      |                    |                |            |                   | FR0100            |
|        |               |           |                |                    |                |            |                   |                   |
| Туре   | Frequency     | Level     | Transducer     | Gain / Loss        | Final          | Test Point | Margin: FCC Class |                   |
| A X 7  | (MHz)         | (dBuV)    | ( <b>dB</b> )  | ( <b>dB</b> )      | (dBuV)         | T 1        | <b>B AV (dB)</b>  | Class B QP (dB)   |
| AV     | 0.159         | 10.6      | 3.8            | 10.0               | 24.4           | Line 1     | 31.38             | -                 |
| QP     | 0.159         | 23.7      | 3.8            | 10.0               | 37.5           | Line 1     | -                 | 28.23             |
| AV     | 0.269         | 18.8      | 2.1            | 10.0               | 30.8           | Line 1     | 21.79             | -                 |
| QP     | 0.269         | 20.6      | 2.1            | 10.0               | 32.6           | Line 1     | -                 | 29.98             |
| AV     | 1.145         | 17.6      | 1.3            | 10.0               | 29.0           | Line 1     | 17.01             | -                 |
| QP     | 1.145         | 19.7      | 1.3            | 10.0               | 31.1           | Line 1     | -                 | 24.93             |
| AV     | 1.888         | 18.9      | 1.6            | 10.0               | 30.4           | Line 1     | 15.58             | -                 |
| QP     | 1.888         | 21.1      | 1.6            | 10.0               | 32.7           | Line 1     | -                 | 23.31             |
| AV     | 4.586         | 19.2      | 1.6            | 10.0               | 30.8           | Line 1     | 15.24             | -                 |
| QP     | 4.586         | 22.5      | 1.6            | 10.0               | 34.1           | Line 1     | -                 | 21.92             |
| AV     | 9.650         | 26.4      | 1.4            | 10.0               | 37.8           | Line 1     | 12.25             | -                 |
| QP     | 9.650         | 29.2      | 1.4            | 10.0               | 40.7           | Line 1     | -                 | 19.35             |
| AV     | 0.152         | 11.8      | 3.9            | 10.0               | 25.6           | Neutral    | 30.32             | -                 |
| QP     | 0.152         | 27.0      | 3.9            | 10.0               | 40.9           | Neutral    | -                 | 25.04             |
| AV     | 0.202         | 14.5      | 3.3            | 10.0               | 27.8           | Neutral    | 26.67             | -                 |
| QP     | 0.202         | 21.2      | 3.3            | 10.0               | 34.5           | Neutral    | -                 | 29.97             |
| AV     | 0.269         | 12.6      | 2.1            | 10.0               | 24.7           | Neutral    | 27.93             | -                 |
| QP     | 0.269         | 16.4      | 2.1            | 10.0               | 28.5           | Neutral    | -                 | 34.13             |
| AV     | 2.095         | 12.7      | 1.6            | 10.0               | 24.2           | Neutral    | 21.76             | -                 |
| QP     | 2.095         | 16.5      | 1.6            | 10.0               | 28.1           | Neutral    | -                 | 27.92             |
| AV     | 9.196         | 24.3      | 1.5            | 10.0               | 35.8           | Neutral    | 14.16             | -                 |
| QP     | 9.196         | 27.7      | 1.5            | 10.0               | 39.3           | Neutral    | -                 | 20.75             |
| AV     | 14.881        | 24.9      | 1.2            | 10.0               | 36.1           | Neutral    | 13.85             | -                 |
| QP     | 14.881        | 28.4      | 1.2            | 10.0               | 39.6           | Neutral    | -                 | 20.39             |


The highest emission measured was at 14.881 MHz, which was 13.85 dB below the limit.

- "Type" refers to the type of measurement performed. The type of measurement made is based on the requirements of the particular standard:
  - PK = Peak Measurement
  - QP = Quasi-Peak Measurement
  - AV = Video Average Measurement
- The "Final" emissions level is attained by taking the "Level" and adding the "Transducer" factor and the "Gain/Loss" factor.
- > The "TestPoint" indicates which AC or DC input power line or which I/O cable the measurement was made on.
- The "Margin" is with reference to the emissions limit. A positive number indicates that the emission measurement is below the limit. A negative number indicates that the emission measurement exceeds the limit.











## Conducted Emissions, CISPR / EN 55011

| Manufacturer:            | A Major Difference | Project Number: | A71127            |
|--------------------------|--------------------|-----------------|-------------------|
| Customer Representative: | Neill Moroney      | Test Area:      | 10 Meter          |
| Model:                   | IonCleanse Premier | S/N:            | 08000             |
| Standard Referenced:     | EN 55011: 2007     | Date:           | November 14, 2007 |
| A71127-11-CE.doc         |                    |                 | FR0100            |

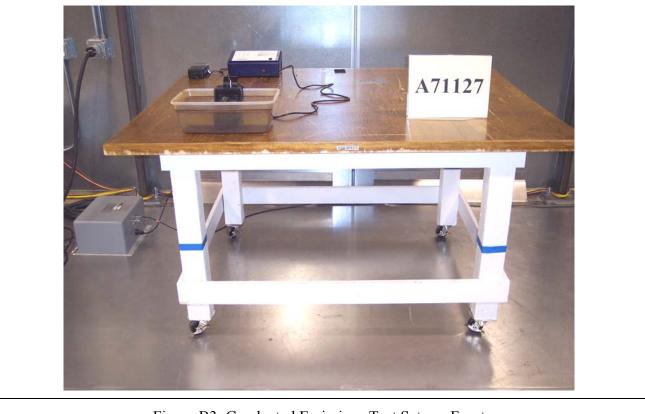



Figure B3: Conducted Emissions Test Setup - Front



## Conducted Emissions, CISPR / EN 55011

| Manufacturer:            | A Major Difference | Project Number: | A71127            |
|--------------------------|--------------------|-----------------|-------------------|
| Customer Representative: | Neill Moroney      | Test Area:      | 10 Meter          |
| Model:                   | IonCleanse Premier | S/N:            | 08000             |
| Standard Referenced:     | EN 55011: 2007     | Date:           | November 14, 2007 |
| A71127-11-CE.doc         |                    |                 | FR0100            |



Figure B4: Conducted Emissions Test Setup - Right



| Manufacturer:            | A Major Difference | Project Number: | A71127            |
|--------------------------|--------------------|-----------------|-------------------|
| Customer Representative: | Neill Moroney      | Test Area:      | 10 Meter          |
| Model:                   | IonCleanse Premier | S/N:            | 08000             |
| Standard Referenced:     | EN 55011: 2007     | Date:           | November 14, 2007 |
| A71127-11-CE.doc         |                    |                 | FR0100            |



Figure B5: Conducted Emissions Test Setup - Back



# Conducted Emissions, CISPR / EN 55011

| Manufacturer:            | A Major Difference | Project Number: | A71127            |
|--------------------------|--------------------|-----------------|-------------------|
| Customer Representative: | Neill Moroney      | Test Area:      | 10 Meter          |
| Model:                   | IonCleanse Premier | S/N:            | 08000             |
| Standard Referenced:     | EN 55011: 2007     | Date:           | November 14, 2007 |
| A71127-11-CE.doc         |                    |                 | FR0100            |

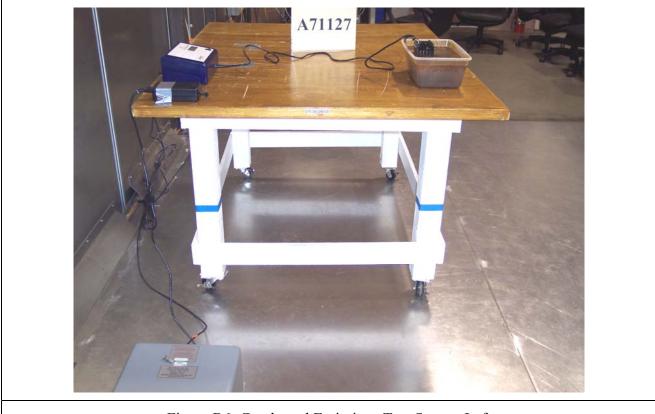



Figure B6: Conducted Emissions Test Setup - Left



## Conducted Emissions, CISPR / EN 55011

| Manufacturer:            | A Major Difference | Project Number: | A71127            |
|--------------------------|--------------------|-----------------|-------------------|
| Customer Representative: | Neill Moroney      | Test Area:      | 10 Meter          |
| Model:                   | IonCleanse Premier | S/N:            | 08000             |
| Standard Referenced:     | EN 55011: 2007     | Date:           | November 14, 2007 |
| A71127-11-CE.doc         |                    |                 | FR0100            |

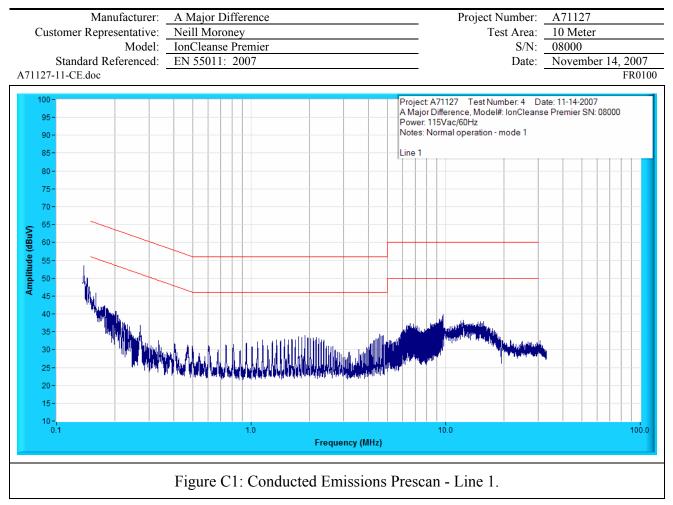
| ID<br>Number | Manufacturer          | Model #              | Serial #   | Description                                      | Cal Date   | Cal Due    |
|--------------|-----------------------|----------------------|------------|--------------------------------------------------|------------|------------|
| 1194         | Solar                 | 9252-50-R-24-<br>BNC | 042012     | LISN                                             | 04/20/2007 | 04/20/2008 |
| 1201         | Agilent<br>Technology | 11947A               | 3107A03807 | Transient Limiter, 9 kHz to 200<br>MHz           | 01/04/2007 | 01/04/2008 |
| 1213         | Solar                 | 7930-100             | 885210     | High Pass Filter, fc: 100kHz, -<br>100dB @ 33kHz | 04/20/2007 | 06/20/2008 |
| 1229         | Hewlett<br>Packard    | 85685A               | 3010A01077 | RF Preselector                                   | 06/12/2007 | 06/12/2008 |
| 1263         | Hewlett<br>Packard    | 8566B                | 3014A06873 | Spectrum Analyzer, 100 Hz to 22<br>GHz           | 08/21/2007 | 08/21/2008 |
| 1264         | Hewlett<br>Packard    | 85662A               | 2848A18247 | Spectrum Analyzer Display                        | 08/21/2007 | 08/21/2008 |
| 1265         | Hewlett<br>Packard    | 85650A               | 2521A00641 | Quasi-Peak Adapter                               | 08/21/2007 | 08/21/2008 |

## **Test Equipment List**

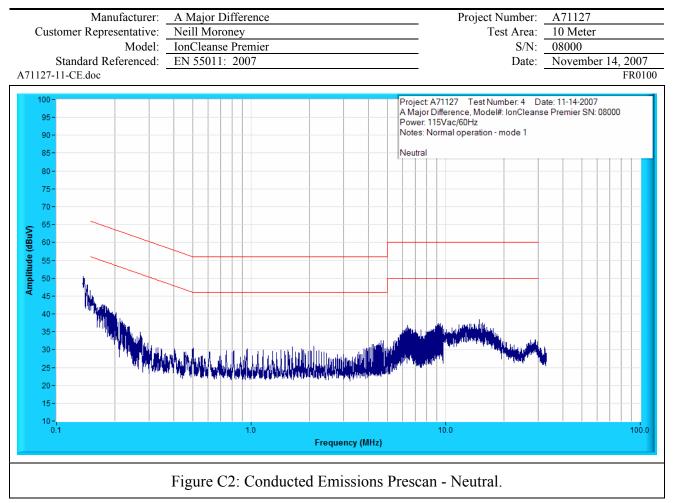
# **APPENDIX C**

# Conducted Emissions Test Data 230 Vac/50 Hz



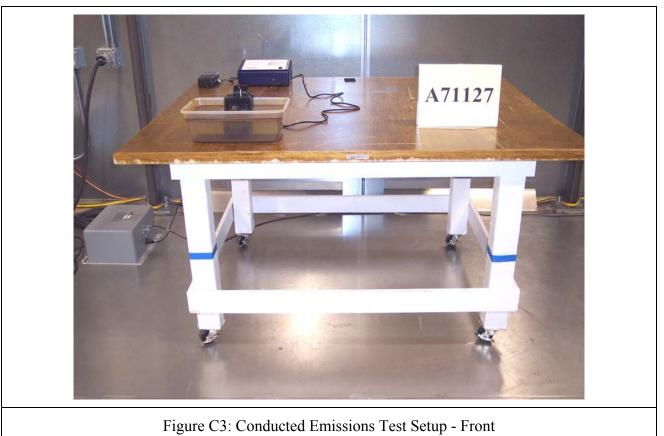

#### Conducted Emissions, CISPR / EN 55011

|        | Manu                  | facturer: | A Major Diffe      | rence         |                |            | Project Number:                | A71127                         |
|--------|-----------------------|-----------|--------------------|---------------|----------------|------------|--------------------------------|--------------------------------|
| Cus    | stomer Repres         | entative: | Neill Moroney      | Neill Moroney |                |            | Test Area:                     | 10 Meter                       |
|        |                       | Model:    | IonCleanse Premier |               |                |            | S/N:                           | 08000                          |
|        | Standard Ref          | erenced:  | ed: EN 55011: 2007 |               |                | Date:      | November 14, 2007              |                                |
|        |                       | perature: | 20°C               | Humidit       | v: 25%         |            |                                | 844mb                          |
|        |                       | Voltage:  | 230Vac/50Hz        |               | y. <u>2370</u> |            |                                | 511110                         |
|        | Configuration         |           | Normal Opera       | tion Mode #1  |                |            |                                |                                |
|        | U                     | -         |                    | uon mode #1   |                |            |                                |                                |
| 471127 | 1 est E<br>-11-CE.doc | ingineer: | Tom Wittig         |               |                |            |                                | FR0100                         |
|        |                       |           |                    |               |                |            |                                |                                |
| Туре   | Frequency             | Level     | Transducer         | Gain / Loss   | Final          | Test Point | Margin: EN55011                | Margin: EN55011                |
|        | (MHz)                 | (dBuV)    | ( <b>dB</b> )      | ( <b>dB</b> ) | (dBuV)         |            | Class B Group 1 &<br>2 AV (dB) | Class B Group 1 &<br>2 QP (dB) |
| AV     | 0.199                 | 25.1      | 3.4                | 10.0          | 38.6           | Line 1     | 16.04                          | - 2 QI (ub)                    |
| OP     | 0.199                 | 27.0      | 3.4                | 10.0          | 40.4           | Line 1     | -                              | 24.17                          |
| ÂV     | 0.400                 | 22.1      | 1.7                | 10.0          | 33.8           | Line 1     | 15.06                          | -                              |
| QP     | 0.400                 | 22.7      | 1.7                | 10.0          | 34.4           | Line 1     | -                              | 24.44                          |
| AV     | 0.468                 | 21.9      | 1.6                | 10.0          | 33.5           | Line 1     | 13.44                          | -                              |
| QP     | 0.468                 | 23.0      | 1.6                | 10.0          | 34.5           | Line 1     | -                              | 22.36                          |
| AV     | 0.738                 | 22.6      | 1.5                | 10.0          | 34.0           | Line 1     | 11.95                          | -                              |
| QP     | 0.738                 | 23.6      | 1.5                | 10.0          | 35.1           | Line 1     | -                              | 20.88                          |
| AV     | 1.876                 | 24.8      | 1.6                | 10.0          | 36.3           | Line 1     | 9.69                           | -                              |
| QP     | 1.876                 | 24.6      | 1.6                | 10.0          | 36.1           | Line 1     | -                              | 19.88                          |
| AV     | 6.306                 | 28.8      | 1.6                | 10.0          | 40.4           | Line 1     | 9.60                           | -                              |
| QP     | 6.306                 | 31.5      | 1.6                | 10.0          | 43.1           | Line 1     | -                              | 16.92                          |
| AV     | 0.202                 | 19.4      | 3.4                | 10.0          | 32.7           | Neutral    | 21.82                          | -                              |
| QP     | 0.202                 | 23.3      | 3.4                | 10.0          | 36.6           | Neutral    | -                              | 27.89                          |
| AV     | 0.336                 | 14.3      | 1.9                | 10.0          | 26.2           | Neutral    | 24.48                          | -                              |
| QP     | 0.336                 | 16.8      | 1.9                | 10.0          | 28.6           | Neutral    | -                              | 32.05                          |
| AV     | 0.404                 | 16.5      | 1.7                | 10.0          | 28.2           | Neutral    | 20.55                          | -                              |
| QP     | 0.404                 | 18.2      | 1.7                | 10.0          | 29.9           | Neutral    | -                              | 28.82                          |
| AV     | 1.349                 | 16.2      | 1.4                | 10.0          | 27.7           | Neutral    | 18.35                          | -                              |
| QP     | 1.349                 | 18.4      | 1.4                | 10.0          | 29.8           | Neutral    | -                              | 26.25                          |
| AV     | 6.209                 | 25.1      | 1.6                | 10.0          | 36.8           | Neutral    | 13.25                          | -                              |
| QP     | 6.209                 | 26.7      | 1.6                | 10.0          | 38.3           | Neutral    | -                              | 21.66                          |
| AV     | 8.440                 | 22.1      | 1.6                | 10.0          | 33.7           | Neutral    | 16.30                          | -                              |
| QP     | 8.440                 | 25.9      | 1.6                | 10.0          | 37.5           | Neutral    | -                              | 22.48                          |


The highest emission measured was at 6.209 MHz, which was 13.25 dB below the limit.

- "Type" refers to the type of measurement performed. The type of measurement made is based on the requirements of the particular standard:
  - PK = Peak Measurement
  - QP = Quasi-Peak Measurement
  - AV = Video Average Measurement
- The "Final" emissions level is attained by taking the "Level" and adding the "Transducer" factor and the "Gain/Loss" factor.
- > The "TestPoint" indicates which AC or DC input power line or which I/O cable the measurement was made on.
- The "Margin" is with reference to the emissions limit. A positive number indicates that the emission measurement is below the limit. A negative number indicates that the emission measurement exceeds the limit.












| Manufacturer:            | A Major Difference | Project Number: | A71127            |
|--------------------------|--------------------|-----------------|-------------------|
| Customer Representative: | Neill Moroney      | Test Area:      | 10 Meter          |
| Model:                   | IonCleanse Premier | S/N:            | 08000             |
| Standard Referenced:     | EN 55011: 2007     | Date:           | November 14, 2007 |
| A71127-11-CE.doc         |                    |                 | FR0100            |





## Conducted Emissions, CISPR / EN 55011

| Manufacturer:            | A Major Difference | Project Number: | A71127            |
|--------------------------|--------------------|-----------------|-------------------|
| Customer Representative: | Neill Moroney      | Test Area:      | 10 Meter          |
| Model:                   | IonCleanse Premier | S/N:            | 08000             |
| Standard Referenced:     | EN 55011: 2007     | Date:           | November 14, 2007 |
| A71127-11-CE.doc         |                    |                 | FR0100            |



Figure C4: Conducted Emissions Test Setup - Right



| Manufacturer:            | A Major Difference | Project Number: | A71127            |
|--------------------------|--------------------|-----------------|-------------------|
| Customer Representative: | Neill Moroney      | Test Area:      | 10 Meter          |
| Model:                   | IonCleanse Premier | S/N:            | 08000             |
| Standard Referenced:     | EN 55011: 2007     | Date:           | November 14, 2007 |
| A71127-11-CE.doc         |                    |                 | FR0100            |



Figure C5: Conducted Emissions Test Setup - Back



# Conducted Emissions, CISPR / EN 55011

| Manufacturer:            | A Major Difference | Project Number: | A71127            |
|--------------------------|--------------------|-----------------|-------------------|
| Customer Representative: | Neill Moroney      | Test Area:      | 10 Meter          |
| Model:                   | IonCleanse Premier | S/N:            | 08000             |
| Standard Referenced:     | EN 55011: 2007     | Date:           | November 14, 2007 |
| A71127-11-CE.doc         |                    |                 | FR0100            |

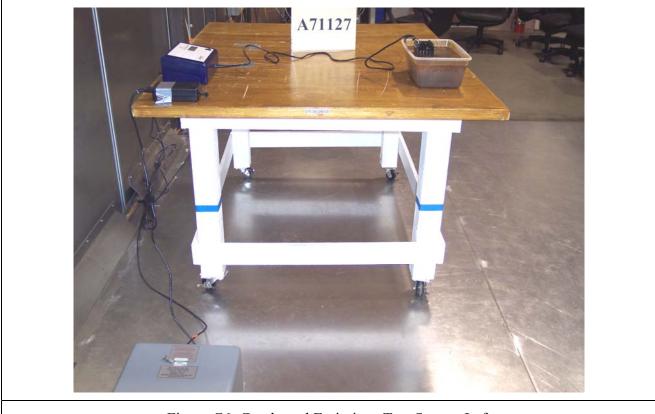



Figure C6: Conducted Emissions Test Setup - Left



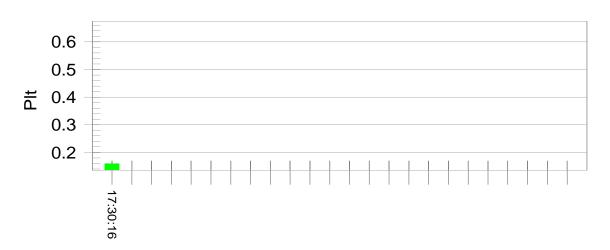
## Conducted Emissions, CISPR / EN 55011

| Manufacturer:            | A Major Difference | Project Number: | A71127            |
|--------------------------|--------------------|-----------------|-------------------|
| Customer Representative: | Neill Moroney      | Test Area:      | 10 Meter          |
| Model:                   | IonCleanse Premier | S/N:            | 08000             |
| Standard Referenced:     | EN 55011: 2007     | Date:           | November 14, 2007 |
| A71127-11-CE.doc         |                    |                 | FR0100            |

| ID     | Manufacturer          | Model #              | Serial #   | Description                                      | Cal Date   | Cal Due    |
|--------|-----------------------|----------------------|------------|--------------------------------------------------|------------|------------|
| Number |                       |                      |            |                                                  |            |            |
| 1194   | Solar                 | 9252-50-R-24-<br>BNC | 042012     | LISN                                             | 04/20/2007 | 04/20/2008 |
| 1201   | Agilent<br>Technology | 11947A               | 3107A03807 | Transient Limiter, 9 kHz to 200<br>MHz           | 01/04/2007 | 01/04/2008 |
| 1213   | Solar                 | 7930-100             | 885210     | High Pass Filter, fc: 100kHz, -<br>100dB @ 33kHz | 04/20/2007 | 06/20/2008 |
| 1229   | Hewlett<br>Packard    | 85685A               | 3010A01077 | RF Preselector                                   | 06/12/2007 | 06/12/2008 |
| 1263   | Hewlett<br>Packard    | 8566B                | 3014A06873 | Spectrum Analyzer, 100 Hz to 22<br>GHz           | 08/21/2007 | 08/21/2008 |
| 1264   | Hewlett<br>Packard    | 85662A               | 2848A18247 | Spectrum Analyzer Display                        | 08/21/2007 | 08/21/2008 |
| 1265   | Hewlett<br>Packard    | 85650A               | 2521A00641 | Quasi-Peak Adapter                               | 08/21/2007 | 08/21/2008 |

# Test Equipment List

# **APPENDIX D**


AC Power Line Flicker Test Data



## AC Power-Line Flicker per IEC / EN 61000-3-3

| Manufacturer:                                                                                                                                              | A Major Difference                                          | Project Number:                                                   | A71127            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------|-------------------|
| Customer Representative:                                                                                                                                   | Neill Moroney                                               | Toject Number:<br>Test Area:                                      | GP 2              |
| Model:                                                                                                                                                     | IonCleanse Premier                                          | S/N:                                                              | 08000             |
| Standard Referenced:                                                                                                                                       | EN 61000 -6-1 : 2007                                        | Date:                                                             | November 29, 2007 |
| Temperature:                                                                                                                                               | 21°C Humidity: 32%                                          | Pressure:                                                         | 834 mb            |
| Input Voltage:                                                                                                                                             | 230VAC/50Hz                                                 |                                                                   |                   |
| Configuration of Unit:                                                                                                                                     | Normal Operation Mode #1                                    |                                                                   |                   |
| Test Engineer:                                                                                                                                             | Tom Wittig                                                  |                                                                   |                   |
| A71127-3-3.doc                                                                                                                                             |                                                             |                                                                   | FR0100            |
|                                                                                                                                                            | Flicker Test Summary per EN/IEC6100                         |                                                                   |                   |
| EUT: IonCleanse Premier<br>Test category: All paramet<br>Test date: 11/29/2007<br>Test duration (min): 120<br>Comment: A71127<br>Customer: A Major Differe | Start time: 3:29:51 PM<br>Data file name: F-000022.cts_data | Tested by: Tom Wittig<br>Test Margin: 100<br>End time: 5:30:17 PM |                   |
| Test Result: Pass                                                                                                                                          | Status: Test Completed                                      |                                                                   |                   |
|                                                                                                                                                            |                                                             |                                                                   |                   |
| Pst <sub>i</sub> and limit line                                                                                                                            |                                                             | European                                                          | Limits            |
| Pst; and limit line                                                                                                                                        |                                                             | European                                                          | Limits            |
|                                                                                                                                                            |                                                             | European                                                          | Limits            |
| 1.00                                                                                                                                                       |                                                             | European                                                          | Limits            |
|                                                                                                                                                            |                                                             | European                                                          | Limits            |
| 1.00                                                                                                                                                       |                                                             | European                                                          | Limits            |
| 1.00                                                                                                                                                       |                                                             | European                                                          | Limits            |
| 1.00<br>0.75                                                                                                                                               |                                                             | European                                                          | Limits            |
| 1.00<br>0.75<br>0.50                                                                                                                                       |                                                             | European                                                          | Limits            |
| 1.00<br>0.75                                                                                                                                               |                                                             |                                                                   | Limits            |
| 1.00<br>0.75<br>0.50                                                                                                                                       |                                                             |                                                                   |                   |
| 1.00<br>0.75<br>0.50<br>0.25                                                                                                                               |                                                             |                                                                   |                   |
| 1.00<br>0.75<br>0.50<br>0.25                                                                                                                               | - 16:2<br>- 16:2                                            |                                                                   |                   |
| 1.00<br>0.75<br>0.50<br>0.25                                                                                                                               |                                                             |                                                                   |                   |

Plt and limit line



Parameter values recorded during the test:

| Vrms at the end of test (Volt): | 230.27 |                  |       |      |
|---------------------------------|--------|------------------|-------|------|
| Highest dt (%):                 | 0.00   | Test limit (%):  | 3.30  | Pass |
| Time(mS) > dt:                  | 0.0    | Test limit (mS): | 500.0 | Pass |
| Highest dc (%):                 | 0.00   | Test limit (%):  | 3.30  | Pass |
| Highest dmax (%):               | 0.00   | Test limit (%):  | 4.00  | Pass |
| Highest Pst (10 min. period):   | 0.160  | Test limit:      | 1.000 | Pass |
| Highest Plt (2 hr. period):     | 0.160  | Test limit:      | 0.650 | Pass |
|                                 |        |                  |       |      |



# AC Power-Line Flicker per IEC / EN 61000-3-3

| Manufacturer:            | A Major Difference   | Project Number: | A71127            |
|--------------------------|----------------------|-----------------|-------------------|
| Customer Representative: | Neill Moroney        | Test Area:      | GP 2              |
| Model:                   | IonCleanse Premier   | S/N:            | 08000             |
| Standard Referenced:     | EN 61000 -6-1 : 2007 | Date:           | November 29, 2007 |
| A71127-3-3.doc           |                      |                 | FR0100            |



Figure D1. AC Power Line Flicker Test Setup.



## AC Power-Line Flicker per IEC / EN 61000-3-3

| Manufacturer:            | A Major Difference   | Project Number: | A71127            |
|--------------------------|----------------------|-----------------|-------------------|
| Customer Representative: | Neill Moroney        | Test Area:      | GP 2              |
| Model:                   | IonCleanse Premier   | S/N:            | 08000             |
| Standard Referenced:     | EN 61000 -6-1 : 2007 | Date:           | November 29, 2007 |
| A71127-3-3.doc           |                      |                 | FR0100            |

| - ••• • ·    |              |         |          |                                 |            |            |  |
|--------------|--------------|---------|----------|---------------------------------|------------|------------|--|
| ID<br>Number | Manufacturer | Model # | Serial # | Description                     | Cal Date   | Cal Due    |  |
| Tumber       |              |         |          |                                 |            |            |  |
| 1153         | California   | PACS-1  | 72229    | Harmonics and Flicker Measuring | 01/06/2007 | 01/06/2008 |  |
|              | Instruments  |         |          | Network                         |            |            |  |
| 1185         | California   | CTS 3.0 | NA       | CTS V3.0.15, Application        | NA         | NA         |  |
|              | Instruments  |         |          | program for Harmonics and       |            |            |  |
| 1026         | California   | 5001iX  | 55638    | AC Power Source, 5kVA           | NA         | NA         |  |
|              | Instruments  |         |          |                                 |            |            |  |
| 1206         | Extech       | 445715  | 252866   | Hygro-Thermometer               | 03/06/2007 | 03/06/2008 |  |

### **Test Equipment List**

# **APPENDIX E**

# **Product Data Sheet**



www.emcintegrity.com

1736 Vista View Drive | Longmont, CO 80504 | tel: 303.776.7249 | fax: 303.776.7314 | info@emcintegrity.com

# 1.0 Client Information

| Client Information    |                                    |
|-----------------------|------------------------------------|
| Manufacturer Name     | A Major Difference                 |
| Address               | 10235 S. Progress Way, Units 7 & 8 |
| City                  | Parker                             |
| State                 | Colorado                           |
| Zip Code              | 80134                              |
| Client Representative | Neill Moroney                      |
| Title                 |                                    |
| Phone                 | 303-840-8206                       |
| Fax                   | 303-840-8320                       |
| Email                 | rwalker@stargeteinternational.com  |

## 2.0 Product Information - General

| Product Infor            | mation                                                        | -                                                 |                   |                  |          |
|--------------------------|---------------------------------------------------------------|---------------------------------------------------|-------------------|------------------|----------|
| Product Name (a          | as it should appear on test report)                           | IonClea                                           | nse Premier       |                  |          |
| Model Number             |                                                               | IonCleanse Premier                                |                   |                  |          |
| Functional descr         | ription of product                                            | Vitality Enhancement System                       |                   |                  |          |
| Product type (IT         | , Medical, Scientific, Industrial, etc.)                      | Household                                         |                   |                  |          |
| Is the product an        | n intentional radiator                                        | No                                                |                   |                  |          |
| Product Dimens           | ions                                                          | 12 x 8 x                                          | . 4               |                  |          |
| Product Weight           |                                                               | < 10 lbs                                          |                   |                  |          |
| Will fork lift be        | required                                                      | No                                                |                   |                  |          |
| Applicable Stan          | dards, if known                                               | Generic                                           | (61000-6-1 / EN   | 55011Grp 1 Cla   | ss A)    |
| Describe all env<br>used | ironment(s) where product will be                             | Househ                                            | old/non medical p | ractitioners     |          |
|                          | nsist of multiple components? (If yes, each system component) | Yes – Power Supply (external), Main Box and Array |                   |                  |          |
| Cycle time $> 3$ s       | econds? (If yes, How long?)                                   | No                                                |                   |                  |          |
| Highest internal         | ly generated frequency                                        | 4 MHz                                             |                   |                  |          |
| Product Set-up           | Гime                                                          | < 15 minutes                                      |                   |                  |          |
| Boot up time in down     | the event of an unintentional power                           | < 5 min                                           | utes              |                  |          |
| Identify all I/O         | Connections as well as maximum associa                        | ated cable                                        | lengths below     |                  |          |
| Model No.                | Description                                                   |                                                   | Shielded?         | Length           | Quantity |
|                          | Array Cable                                                   |                                                   |                   | 2 ft<br>(approx) | 1        |
|                          |                                                               |                                                   |                   |                  |          |
|                          |                                                               |                                                   |                   |                  |          |
|                          |                                                               |                                                   |                   |                  |          |
|                          |                                                               |                                                   |                   |                  |          |



www.emcintegrity.com

1736 Vista View Drive | Longmont, CO 80504 | tel: 303.776.7249 | fax: 303.776.7314 | info@emcintegrity.com

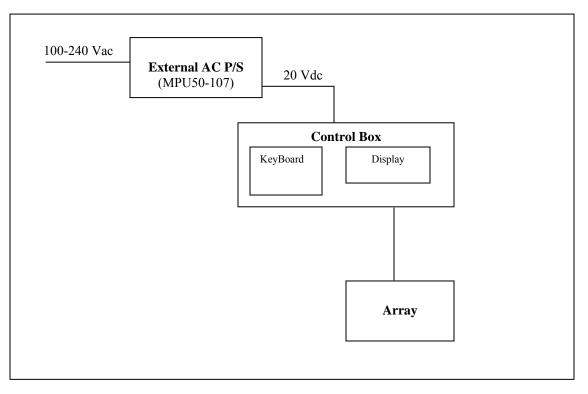
## 3.0 Power

| Power Requirements                                                           | Power Requirements                                                  |  |  |  |  |
|------------------------------------------------------------------------------|---------------------------------------------------------------------|--|--|--|--|
| Input Voltage Rating as it appears on unit, power supply, or power brick     | External Brick (SinPro model MPU50-107)<br>100-240 Vac,<br>47-63 Hz |  |  |  |  |
| Input Current (specify @ 230 Vac/50 Hz)                                      | 1.35 A                                                              |  |  |  |  |
| Single or Multi-Phase<br>(If multi-phase, specify delta or wye)              | Single Phase                                                        |  |  |  |  |
| Is input power connector two-prong (Hot & Neutral) or 3-prong (H, N, Ground) | 3 Prong grounded                                                    |  |  |  |  |
| Does UUT have more than 1 power cord? (If yes, explain.)                     | No                                                                  |  |  |  |  |

## 4.0 Unit Under Test (UUT) – Detailed Information

| UUT Hardwa                                                                         | UT Hardware    |            |               |                                                                   |                                         |  |  |
|------------------------------------------------------------------------------------|----------------|------------|---------------|-------------------------------------------------------------------|-----------------------------------------|--|--|
| Condition                                                                          |                | New – P    | roduction Li  | ne                                                                |                                         |  |  |
| Configuration                                                                      | n              | Mode 1 f   | for 60 minute | es, with sali                                                     | nity level set to approx. 2.0 Amps      |  |  |
| Input Power                                                                        |                | 230 Vac    |               |                                                                   |                                         |  |  |
| UUT Compo                                                                          | onents         |            |               |                                                                   |                                         |  |  |
| Name                                                                               | Mode           | l No.      | Serial        | l No.                                                             | Description                             |  |  |
| P/S                                                                                | MPU5           |            |               | -                                                                 | External Sinpro AC/DC Converter.        |  |  |
| Main Box                                                                           | IonCle<br>Pren |            | 080           | 00                                                                | Main control box for IonCleanse Premier |  |  |
| Array                                                                              |                | -          |               | _                                                                 | Array to be immersed in water solution  |  |  |
|                                                                                    |                |            |               |                                                                   |                                         |  |  |
|                                                                                    |                |            |               |                                                                   |                                         |  |  |
|                                                                                    |                |            |               |                                                                   |                                         |  |  |
| I/O Cabling                                                                        |                |            |               |                                                                   |                                         |  |  |
| See Section 2                                                                      | .0 for det     | ails       |               |                                                                   |                                         |  |  |
| UUT Softwa                                                                         | re/Firmv       | vare       |               |                                                                   |                                         |  |  |
| Name                                                                               | V              | version/R  | evision       |                                                                   | Functionality                           |  |  |
|                                                                                    |                | 5A0        | 5             | Custom software to control parameters (Time, sample rate, etc) of |                                         |  |  |
|                                                                                    |                | 0110       | 0             |                                                                   | product                                 |  |  |
|                                                                                    |                |            |               |                                                                   |                                         |  |  |
| UUT Operat                                                                         |                |            | 1             |                                                                   |                                         |  |  |
| List all freque                                                                    |                | product    |               | 4 MHz                                                             |                                         |  |  |
| generates/uses                                                                     |                | araiaad d  | uring tast?   | Modo 1                                                            |                                         |  |  |
| How will product be exercised during test?<br>How will product be monitored during |                |            | -             | Mode 1                                                            |                                         |  |  |
| test?                                                                              |                |            | -             | Display                                                           |                                         |  |  |
| What are the p                                                                     |                |            |               | No change                                                         |                                         |  |  |
| Specify tolera                                                                     | nce of all     | critical p | arameters.    | No Tolerar                                                        | nce                                     |  |  |




www.emcintegrity.com

1736 Vista View Drive | Longmont, CO 80504 | tel: 303.776.7249 | fax: 303.776.7314 | info@emcintegrity.com

## 5.0 Support Equipment (SE) – Detailed Information

| Support Equ  | ipment (SE) |          |         |   |               |        |          |
|--------------|-------------|----------|---------|---|---------------|--------|----------|
| Name         | Model No.   | Seria    | l No.   |   | Descript      | ion    |          |
| N/A          | N/A         | N        | Ά       |   | N/A           |        |          |
|              |             |          |         |   |               |        |          |
| SE I/O Cabli | ng          |          |         | - |               |        |          |
| Model No.    |             | Desc     | ription |   | Shielded?     | Length | Quantity |
| N/A          |             | <u> </u> | N/A     |   | N/A           | N/A    | N/A      |
|              |             |          |         |   |               |        |          |
| SE Software  | /Firmware   |          |         |   |               |        | -        |
| Name         | Version/H   | Revision |         | ] | Functionality |        |          |
| N/A          | N/2         | 4        |         |   | N/A           |        |          |
|              |             |          |         |   |               |        |          |

## 6.0 Block Diagram



(Must be completed prior to testing).

# **APPENDIX F**

# **EMI Test Log**



## **EMI Test Log**

| Manufacturer:            | A Major Difference                | Project Number: | A71127 |       |
|--------------------------|-----------------------------------|-----------------|--------|-------|
| Model:                   | IonCleanse                        | S/N:            | 08000  |       |
| Customer Representative: | Neill Moroney                     |                 |        |       |
| Standard Referenced:     | EN61000-6-1 & EN55011/FCC Part 15 |                 |        |       |
|                          |                                   |                 | FI     | R0105 |

| Test        | Test | Date         | Event                                                                       | Time    | Result | Initials |
|-------------|------|--------------|-----------------------------------------------------------------------------|---------|--------|----------|
| 1 651       | Code | Date         | Event                                                                       | (hrs)   | Acsult | muar     |
| RE          | 1152 | November 14, | Test #1, 30-1000 MHz, 8 rads, 4 heights, 3 second dwell                     | (III S) |        |          |
| TLL         | 1102 | 2007         | Normal operation – mode 3                                                   |         |        |          |
|             |      | 2007         | Mode 3, saw spermatic broadband noise spikes occurred due to                |         |        |          |
|             |      |              | units relay switching from negative to positive modes                       |         |        |          |
|             |      |              | Test #2, 30-1000 MHz, 8 rads, 4 heights, 3 second dwell                     | 2.0     | Pass   | TW       |
|             |      |              | Normal operation – mode 1                                                   | 2.0     | 1 455  | 1        |
| CE          | 2151 |              | Test#3: 150kHz – 30MHz, 230VAC/50Hz                                         | 1.0     | Pass   | KJ       |
| CL          | 2341 |              | Test#4: 150kHz – 30MHz, 115VAC/50Hz                                         | 1.0     | Pass   | KJ       |
| 4-3         | 5008 | November 21, | Performed RI from 80-1000MHz @ 3V/m (230VAC/50Hz)                           | 8.0     | 1 455  | BN       |
| 4-3         | 5008 | 2007         | Ŭ , , , , , , , , , , , , , , , , , , ,                                     | 0.0     |        | DIN      |
|             |      |              | Front Side V-Pole At 465MHz EUT operational state changes to                |         |        |          |
|             |      |              | High Temp Overheat State, EUT requires reboot.                              |         |        |          |
|             |      |              | Disconnected the Array and retested on Front Side V-pole at                 |         |        |          |
|             |      |              | 465MHz and EUT still goes into an error.                                    |         |        |          |
|             |      |              | Modification required for compliance – Original software                    |         |        |          |
|             |      |              | (Revision 5A04) was designed to set alarm state for 1 single                |         |        |          |
|             |      |              | instance of temperature reading above 180°F. Product                        |         |        |          |
|             |      |              | modified to incorporate software Revision 5A05 to require                   |         |        |          |
|             |      |              | product to maintain temperature reading above 180°F for 150                 |         |        |          |
|             |      |              | consecutive seconds before proceeding to alarm state.                       |         |        |          |
|             |      |              | Performed RI from 80-1000MHz @ 3V/m (230VAC/50Hz)                           |         |        |          |
|             |      |              | On Front Side and Right Side at about 85-88MHz EUT resets itself.           |         |        |          |
|             |      |              | On Right Side H-Pole EUT is being retuned at 86MHz from + to -              |         |        |          |
|             |      |              | With the keypad ribbon cable disconnected EUT does not have any errors.     |         |        |          |
|             |      |              | Modification required for compliance: Added a Ferrite to the                |         |        |          |
|             |      |              | keypad ribbon cable and Ran EUT up to 100MHz and it passed                  |         |        |          |
|             |      |              | up to that point. H-Pole Right Side.                                        |         |        |          |
|             |      |              | Removed ferrite and reran Right Side H-pole at 85 MHz EUT                   |         |        |          |
|             |      |              | resets itself. (X2)                                                         |         |        |          |
|             |      |              | Put ferrite back on keypad ribbon cable reran Right Side H-pole,            |         |        |          |
|             |      |              | ran up to 100MHz and EUT did not have an errors.                            |         |        |          |
|             |      |              | Completed RI on the Right Side H-pole.                                      |         |        |          |
| 4-6         | 4612 | November 26, | Performed CI @ 3Vrms (230VAC/50Hz).                                         | 2.0     | Pass   | BN       |
| <b>-</b> -0 | -    | 2007         |                                                                             | 2.0     | 1 435  | DIV      |
| 4-4         | 4401 |              | Performed EFT (230VAC/50Hz).                                                | 1.0     | Pass   | BN       |
| 4-11        | 4101 |              | Performed PQF (230VAC/50/60Hz).                                             | 1.0     | Pass   | BN       |
| 4-11        | 4190 |              | Performed PQF (230VAC/50/60Hz).                                             | 0.0     | Pass   | BN       |
|             |      |              | At 0% at 250 Cycles 50Hz and 0% at 300 Cycles 60Hz: EUT had                 |         |        |          |
|             |      |              | to be restarted after every test.                                           |         |        |          |
| 4-5         | 4515 |              | Performed Surge (230VAC/50Hz)                                               | 5.0     | Pass   | BN       |
| 4-2         | 4223 |              | Performed ESD (230VAC/50Hz)                                                 | 3.0     | Pass   | BN       |
|             |      |              | Figure A3, Figure A4, Figure A5, Figure A6 and Figure A7: No Air Discharges |         |        |          |



# EMI Test Log

| Manufacturer:            | A Major Difference                | Project Number: | A71127 |   |
|--------------------------|-----------------------------------|-----------------|--------|---|
| Model:                   | IonCleanse                        | S/N:            | 08000  |   |
| Customer Representative: | Neill Moroney                     |                 |        |   |
| Standard Referenced:     | EN61000-6-1 & EN55011/FCC Part 15 |                 |        |   |
|                          |                                   |                 | FR010: | 5 |

|      |      |              |                                                             |       |        | 110105   |
|------|------|--------------|-------------------------------------------------------------|-------|--------|----------|
| Test | Test | Date         | Event                                                       | Time  | Result | Initials |
|      | Code |              |                                                             | (hrs) |        |          |
|      |      |              | Figure A3: Figure A4 and Figure A5: No Contact Discharges.  |       |        |          |
|      |      |              | Figure A6 and Figure A7: Contact Discharges at +/-4kV Only. |       |        |          |
| 4-3  | 4344 | November 29, | Performed RF Immunity, 80-1000 MHz                          | 4.0   | Pass   | TW       |
|      |      | 2007         |                                                             |       |        |          |
| 4-3  | 4391 |              | Performed RF Immunity, 1400-2000 MHz                        | 1.0   | Pass   | TW       |
| 4-3  | 4391 |              | Performed RF Immunity, 2000-2700 MHz                        | 1.0   | Pass   | TW       |
| 3-2  | 3302 |              | Performed Flicker                                           | 2.0   | Pass   | TW       |

# **APPENDIX G**

# Laboratory Accreditations



## Nemko Laboratory Authorization Authorization: ELA 215

| EMC Laboratory: | EMC Integrity, Inc.<br>1736 Vista View Drive |
|-----------------|----------------------------------------------|
|                 | Longmont, Colorado 80504<br>USA              |

Scope of Authorization: Authorization: All CENELEC standards [ENs] for EMC that are listed on the accompanying page, and all of the corresponding CISPR, IEC and ISO EMC standards that are listed on the accompanying page.

Nemko has assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against <u>ISO/IEC 17025</u> or equivalent. The laboratory also fulfils the conditions described in Nemko Document <u>NLA -10</u>. During the visit by the Nemko representative it was found that the Laboratory is capable of performing tests within the Scope of the Authorisation.

Accordingly, Nemko will normally accept test results from the laboratory on a partial or complete basis for certification of the products.

In order to maintain the Authorisation, the information given in the pertinent NLA-10 must be carefully followed. Nemko is to be promptly notified about any changes in the situation at the Laboratory, which may affect the basis for this Authorisation. The Authorisation may be withdrawn at any time if the conditions are no longer considered to be fulfilled.

### The Authorisation is valid through December 31, 2008.

Dallas, Texas, USA. For and on behalf of Nemko AS:

Katerlin

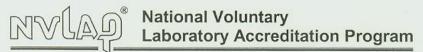
T.B. Ketterling, **V** Nemko ELA Co-ordinator Region: North America

 Nemko AS
 Gaustadalléen 30
 P.O.Box 73 Blindern
 N-0314 Oslo
 Norway
 T +47 22 96 03 30
 F +47 22 96 05 50
 Enterprise number NO974404532

 1(2)



# Nemko Laboratory Authorization Authorization: ELA 215


## SCOPE OF AUTHORIZATION

Capability to perform a basic test implies also that any product (family) standard calling up this basic test is also within the scope if mentioned below or not.

| Ge                                                                                                             | neric & Product – Family Stan                                                                                                     | dards                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| EN 55011 :1998+A1 :1999<br>+A2 :2002<br>CISPR 11:1997 (Modified) +<br>A1:1999 + A2:2002<br>CISPR 11 Ed. 4.1    | EN 55014-1:2000 + A1:2001 +<br>A2:2002<br>CISPR 14-1:2000 + A1:2001 +<br>A2:2002<br>CISPR 14-1 Ed. 5.0                            | EN 55022: 1998+ A1:2000,<br>+A2:2003<br>CISPR 22: 2003+ A1:2004<br>EN55022:2006<br>CISPR 22:2005 (Modified)                         |
|                                                                                                                | EN 55014-2:1997 + A1:2001<br>CISPR 14-2:1997 + A1:2001<br>CISPR 14-2 Ed. 1.1                                                      | CISPR 22 Ed. 5.2                                                                                                                    |
| EN 55024: 1998 +A1:2001,<br>+A2:2003<br>CISPR 24: 1997 +A1:2001,<br>+A2:2002<br>CISPR 24 Ed. 1.0               | EN 61000-6-1 :2007<br>IEC 61000-6-1 Ed. 2.0<br>EN 61000-6-1: 2001                                                                 | EN 61000-6-2:2005<br>IEC 61000-6-2 Ed. 2.0                                                                                          |
| EN 61000-6-3 :2007<br>EC 61000-6-3 Ed. 2.0<br>EN 61000-6-3: 2001 + A1 :2004                                    | IEC 61000-6-2 Ed. 2.0<br>EN 61000-6-2: 2005<br>IEC 61000-6-2: 2005<br>EN 61000-6-2: 2001                                          | EN 61326:1997 +A1:1998 +<br>A2:2001 +A3:2003<br>IEC 61326:1997 + A1:1998 +<br>A2:2000<br>IEC 61326:2002-02                          |
| EN 60601-1-2:2001<br>EC 60601-1-2:2001                                                                         | EN 55103-1:1996<br>EN 55103-2 :1996                                                                                               | EN 300 386 V.1.3.1<br>EN 300 386 V.1.3.3                                                                                            |
| EN 60601-1-2:2006<br>EC 60601-1-2 Ed. 2.1                                                                      |                                                                                                                                   |                                                                                                                                     |
| EN 61000-3-3: 1995, +A1:2001<br>+A2:2005<br>IEC 61000-3-3: 1994, +A1:2001<br>+A2:2005                          | EN 61000-3-2: 2000 +A2 :2005<br>IEC 61000-3-2: 2000 (Modified)<br>+A1:2001 +A2:2004                                               | BLANK                                                                                                                               |
|                                                                                                                | Basic Standards                                                                                                                   |                                                                                                                                     |
| EN 61000-4-2:1995, +A1:1998,<br>+A2:2000<br>IEC 61000-4-2:1995, +A1:1998,<br>+A2:2000<br>IEC 61000-4-2 Ed. 1.2 | EN 61000-4-3:2002, +A1:2002<br>IEC 61000-4-3:2002, +A1:2002<br>EN 61000-4-3 :2006 +A1 :2006<br>+A2 :2006<br>IEC 61000-4-3 Ed. 3,0 | EN 61000-4-4:1995, +A1:2002,<br>+A2:2002<br>IEC 61000-4-4:1995, +A1:2000,<br>+A2:2001<br>EN 61000-4-4:2004<br>IEC 61000-4-4 Ed. 2.0 |
| EN 61000-4-5:1995, +A1:2001<br>IEC 61000-4-5:1995, +A1:2000<br>EN 61000-4-5:2006<br>IEC 61000-4-5 Ed. 2.0      | EN 61000-4-6:1996, +A1:2001<br>IEC 61000-4-6:1996, +A1:2000<br>EN 61000-4-6 : 2006<br>IEC 61000-4-6 Ed. 2.2                       | EN 61000-4-8:1994,+A1:2001<br>IEC 61000-4-8:1994,+A1:2001<br>IEC 61000-4-8 Ed. 1.1                                                  |
| EN 61000-4-11:2004<br>IEC 61000-4-11 Ed. 2.0<br>EN 61000-4-11:1994, +A1:2000<br>IEC 61000-4-11:1994, +A1:2000  | BLANK                                                                                                                             | BLANK                                                                                                                               |

2(2)

NLA 3 ED3





### SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005

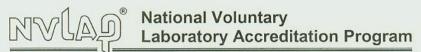
EMC Integrity, Inc. 1736 Vista View Drive Longmont, CO 80504 Mr. Vincent W. Greb Phone: 303-776-7249 Fax: 303-776-7314 E-Mail: vinceg@emcintegrity.com URL: http://www.emcintegrity.com

#### ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

NVLAP LAB CODE 200737-0

NVLAP Code Designation / Description

| Emissions Tes            | st Methods:                                                                                                                                                                                                          |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12/100063c               | IEC 61000-6-3 (1996), EN 61000-6-3 (2001), A1 (2004): Electromagnetic Compatibility (EMC) - Part 6: Generic standards - Section 3: Emission standard for residential, commercial, and light-industrial environments. |
| 12/CIS11f                | AS/NZS CISPR 11 (2002): Industrial, scientific and medical (ISM) radio frequency equipment - Electromagnetic disturbance characteristics - Limits and methods of measurement                                         |
| 12/CIS1 <mark>1</mark> g | IEC/CISPR 11, Ed. 4.1 (2004-06): Industrial, scientific and medical (ISM) radio-frequency equipment - Electromagnetic disturbance characteristics - Limits and methods of measurements                               |
| 12/CIS11h                | AS/NZS CISPR 11 (2004): Industrial, scientific and medical (ISM) radio frequency equipment - Electromagnetic disturbance characteristics - Limits and methods of measurement                                         |
| 12/CIS11i                | IEC/CISPR 11, Ed. 4.1 (2004-06) + A1(2004): Industrial, scientific and medical (ISM) radio frequency equipment - Electromagnetic disturbance characteristics - Limits and methods of measurement                     |
|                          |                                                                                                                                                                                                                      |


2007-07-01 through 2008-06-30

Effective dates

D. Buce

For the National Institute of Standards and Technology

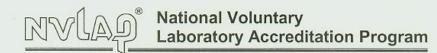
Page 1 of 6





#### NVLAP LAB CODE 200737-0

| NVLAP Code | Designation / Description                                                                                                                                                                               |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12/CIS11j  | EN 55011 (1998) + A1(1999), A2(2002): Industrial, scientific and medical (ISM) radio frequency equipment - Electromagnetic disturbance characteristics - Limits and methods of measurement              |
| 12/CIS11k  | IEC/CISPR 11 (2003), EN 55011 (1998), A2(2002): Limits and Methods of Measurement of<br>Electromagnetic Disturbance Characteristics of Industrial, Scientific, and Medical<br>Radio-Frequency Equipment |
| 12/CIS14b1 | AS/NZS CISPR 14-1 (2003): Electromagnetic Compatibility - Requirements for household appliances, electric tools and similar apparatus - Part 1: Emission                                                |
| 12/CIS14x  | IEC/CISPR 14-1, Ed. 4 (2003): Electromagnetic Compatibility - Requirements for household appliances, electric tools and similar apparatus - Part 1: Emission                                            |
| 12/CIS22   | IEC/CISPR 22 (1997) & EN 55022 (1998) + A1(2000): Limits and methods of measurement of radio disturbance characteristics of information technology equipment                                            |
| 12/CIS22a  | IEC/CISPR 22 (1993) and EN 55022 (1994): Limits and methods of measurement of radio disturbance characteristics of information technology equipment, Amendment 1 (1995) and Amendment 2 (1996)          |
| 12/CIS22a4 | IEC/CISPR 22 (1993) & EN 55022 (1994)+A1(1995), A2(1997): Limits and methods of measurement of radio disturbance characteristics of information technology equipment                                    |
| 12/CI\$22b | CNS 13438 (1997): Limits and Methods of Measurement of Radio Interference<br>Characteristics of Information Technology Equipment                                                                        |
| 12/CIS22e  | IEC/CISPR 22, Fourth Edition (2003-04) & EN 55022 (1998): Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement                                      |
| 12/CIS22c1 | IEC/CISPR 22, Edition 5 (2005) and EN 55022 (1998): Information technology equipment -<br>Radio disturbance characteristics - Limits and methods of measurement                                         |


2007-07-01 through 2008-06-30 Effective dates

For the National Institute of Standards and Technology

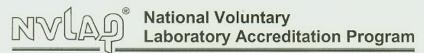
r the National Institute of Standards and Technology NVLAP-01S (REV. 2005-05-19)

Page 2 of 6

- 20






### NVLAP LAB CODE 200737-0

| NVLAP Code | Designation / Description                                                                                                                                                                                                                                                                  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12/CIS22c3 | IEC/CISPR 22, Edition 5 (2005) + A1(2005): Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement                                                                                                                                        |
| 12/CIS22c4 | EN 55022 (1998) + A1(2000) + A2(2003): Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement                                                                                                                                            |
| 12/EM02d   | IEC 61000-3-2, Edition 2.2 (2004-11): Electromagnetic compatibility (EMC) - Part 3-2:<br>Limits - Limits for harmonic current emissions (equipment input current <= 16 A per phase)                                                                                                        |
| 12/EM03b   | IEC 61000-3-3, Edition 1.1(2002-03) & EN 61000-3-3, A1(2001): EMC - Part 3-3; Limits - Limitations of voltage changes, voltage flucuations and flicker, in public low-voltage supply-systems, for equipment with rated current <=16 A per phase and not subject to conditional connections |
| 12/EM03g   | IEC 61000-3-3, Edition 1.1 (2003) +A2 (2005): EMC Part 3-3: Limits - Limitations of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems, for equipment with rated current <= 16 A per phase and not subject to conditional connections                  |
| 12/F18     | FCC OST/MP-5 (1986): FCC Methods of Measurement of Radio Noise Emissions for ISM Equipment (cited in FCC Method 47 CFR Part 18 - Industrial, Scientific, and Medical Equipment)                                                                                                            |
| 12/FCC15b  | ANSI C63.4 (2003) with FCC Method 47 CFR Part 15, Subpart B: Unintentional Radiators                                                                                                                                                                                                       |
| 12/KN22    | KN22 with RRL Notice No. 2005-82 (Sept. 29, 2005): RRL Notice No. 2005-82: Technical<br>Requirements for Electromagnetic Interference Annex 8 (KN-22), RRL Notice No.<br>2005-131: Conformity Assessment Procedures for Electromagnetic Interference                                       |
| 12/T51     | AS/NZS CISPR 22 (2002) and AS/NZS 3548 (1997): Electromagnetic Interference - Limits and Methods of Measurement of Information Technology Equipment                                                                                                                                        |
| 12/VCCla   | VCCI: Agreement of Voluntary Control Council for Interference by Information<br>Technology Equipment - Technical Requirements: V-3/2005.04                                                                                                                                                 |

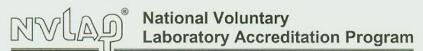
2007-07-01 through 2008-06-30

Effective dates

For the National Institute of Standards and Technology






### NVLAP LAB CODE 200737-0

| NVLAP Code    | Designation / Description                                                                                                                                                                               |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Immunity Test | Methods:                                                                                                                                                                                                |
| 12/610006h    | IEC 61000-6-1, 2nd edition (2005-03): Electromagnetic compatibility (EMC) - Part 6:<br>Generic standards - Section 1: Immunity for residential, commercial and light-industrial<br>environments         |
| 12/610006i    | IEC 61000-6-2, Edition 2.0 (2005-01): Electromagnetic compatibility (EMC) - Part 6-2: Generic standards - Immunity for industrial environments                                                          |
| 12/I01b       | IEC 61000-4-2 (2001); EN 61000-4-2 (2001), A2 (2001): Electrostatic Discharge Immunity<br>Test                                                                                                          |
| 12/I01c       | EN 61000-4-2 +A1(1998) +A2(2001): Electrostatic Discharge Immunity Test                                                                                                                                 |
| 12/І02Ь       | IEC/EN 61000-4-3, Ed. 2.1 (2002), A1 (2002); EN 61000-4-3: Radiated, radio-frequency, electromagnetic field immunity test                                                                               |
| 12/I02e       | EN 61000-4-3 (2002) + A1(2002) + IS1(2004): Radiated, radio-frequency, electromagnetic field immunity test                                                                                              |
| 12/I02f       | EN 61000-4-3 (2002) + A1(2002): Radiated, radio-frequency, electromagnetic field immunity test                                                                                                          |
| 12/I03c       | IEC 61000-4-4, Ed. 2.0 (2004-07): Electromagnetic compatibility (EMC) - Part 4-4: Testing and measurement techniques - Electrical fast transient/burst immunity test                                    |
| 12/I04b       | IEC 61000-4-5 (2001), A1(2000); EN 61000-4-5(2001), A1(2000): Surge Immunity Test                                                                                                                       |
| 12/I05d       | IEC 61000-4-6, Ed. 2.1 (2004); EN 61000-4-6: Electromagnetic compatibility (EMC) - Part 4-6: Testing and measurement techniques - Immunity to conducted disturbances, induced by radio-frequency fields |
| 12/I05e       | EN 61000-4-6 (1996) + A1 (2001) + IS1(2004): Immunity to Conducted Disturbances,<br>Induced by Radio Frequency Fields                                                                                   |

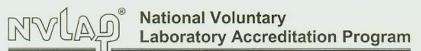
2007-07-01 through 2008-06-30

Effective dates

For the National Institute of Standards and Technology






#### NVLAP LAB CODE 200737-0

| NVLAP Code | Designation / Description                                                                                                                                                                                            |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12/I06b    | IEC 61000-4-8 (2001), A1(2000); EN 61000-4-8 (2001),A1(2000): Power Frequency<br>Magnetic Field Immunity Test                                                                                                        |
| 12/I06c    | EN 61000-4-8 (1993) + A1 (2001): Power Frequency Magnetic Field Immunity Test                                                                                                                                        |
| 12/I07c    | IEC 61000-4-11, Ed. 2 (2004-03) & EN 61000-4-11: Electromagnetic compatibility (EMC) -<br>Part 4-11: Testing and measurement techniques - Voltage dips, short interruptions and<br>voltage variations immunity tests |
| 12/I07e    | EN 61000-4-11 (1994), A1 (2001): Voltage Dips, Short Interruptions and Voltage Variations Immunity Tests                                                                                                             |
| 12/I07f    | EN 61000-4-11 (2004): Voltage Dips, Short Interruptions and Voltage Variations Immunity Tests                                                                                                                        |
| 12/KN11a   | KN 61000-4-11 with RRL Notice No. 2005-130 (Dec 27, 2005): Voltage Dips, Short Interruptions and Voltage Variations Immunity Tests                                                                                   |
| 12/KN24    | KN24 (December 2005) with RRL Notice No. 2005-83: Information Technology Equipment<br>- immunity charateristics - limits and methods of measurements                                                                 |
| 12/KN2a    | KN 61000-4-2 with RRL Notice No. 2005-130 (Dec. 27, 2005): Electrostatic Discharge Immunity Test                                                                                                                     |
| 12/KN3a    | KN 61000-4-3 with RRL Notice No. 2005-130 (Dec. 27, 2005): Radiated, radio-frequency, electromagnetic field immunity test                                                                                            |
| 12/KN4a    | KN 61000-4-4 with RRL Notice No. 2005-130 (Dec. 27, 2005): Electromagnetic<br>compatibility (EMC): Testing and measurement techniques - Electrical Fast Transient/Burst<br>Immun                                     |
| 12/KN5a    | KN 61000-4-5 with RRL Notice No. 2005-130 (Dec. 27, 2005): Surge Immunity Test                                                                                                                                       |
| 12/KN6a    | KN 61000-4-6 with RRL Notice No. 2005-130 (Dec. 27, 2005): Electromagnetic compatibility (EMC): Testing and measurement techniques - Immunity to conducted disturbances,                                             |

2007-07-01 through 2008-06-30 Effective dates

For the National Institute of Standards and Technology

Page 5 of 6





#### ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

#### NVLAP LAB CODE 200737-0

NVLAP Code Designation / Description

12/KN8a

KN 61000-4-8 with RRL Notice No. 2005-130 (Dec. 27, 2005): Power Frequency Magnetic Field Immunity Test

2007-07-01 through 2008-06-30

Effective dates

Page 6 of 6

Sally D. Buce > For the National Institute of Standards and Technology

|  | 2007-07-01 through 2008-06-30 Effective dates Effective dates For the National Institute of Standards and Technology | is accredited by the National Voluntary Laboratory Accreditation Program for specific services,<br>listed on the Scope of Accreditation, for:<br>ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS<br>This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005.<br>This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality<br>management system (refer to joint ISO-ILAC-IAF Communique dated 18 June 2005). | <b>EMIC Integrity, Inc.</b><br>Longmont, CO | Certificate of Accreditation to ISO/IEC 17025:2005 | National Institute of Standards and Lechnology<br>R | United States Department of Commerce |
|--|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------|-----------------------------------------------------|--------------------------------------|
|--|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------|-----------------------------------------------------|--------------------------------------|

# **END OF REPORT**